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In this work, we develop an extended uniform potential (UP) model for a membrane nanopore by
including two different charging mechanisms of the pore walls, namely by electronic charge and by chem-
ical charge. These two charging mechanisms generally occur in polymeric membranes with conducting
agents, or membranes made of conducting materials like carbon nanotubes with surface ionizable groups.
The electronic charge redistributes along the pore in response to the gradient of electric potential in the
pore, while the chemical charge depends on the local pH via a Langmuir-type isotherm. The extended UP
model shows good agreement with experimental data for membrane potential measured at the zero-current
condition. When both types of charge are present, the ratio of the electronic charge to the chemical charge
can be characterized by the dimensionless number of surface groups and the dimensionless capacitance
of the dielectric Stern layer. The performance of the membrane pore in converting osmotic energy from a
salt concentration difference into electrical power can be improved by tuning the electronic charge.
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I. INTRODUCTION

Many porous membranes bear charge on the surface of
their pore walls. Often this charge is due to the polymeric
or inorganic membrane material, which can (de)protonate
to leave a charged surface group [1,2]. The chemical nature
of the charge is determined by the equilibrium between
the surface groups and solution, which typically has a
strong dependence on pH. In other materials where the
pore walls are conductive, the membrane can be charged
electronically [3,4]. Sometimes, both chemical charge and
electronic charge can exist at the same time: either by intro-
ducing ionizable charged groups on conducting materials,
or adding conducting agents, such as carbon nanotubes,
in polymeric membranes [5—8]. The electrostatic effect of
these surface charges plays a significant role in modulat-
ing transport of ionic species through the membrane, and
has been engineered to provide new approaches for energy
conversion [9,10], desalination [11], separation [12], fabri-
cation of ion field-effect transistors [7,13], and mimicking
biological cell membranes [14].

The nature of the electronic and the chemical charge is
very different. The total electronic charge in the pore walls
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is a conserved quantity when there is no electron supply
or leakage via the external circuit or due to a Faradaic
reaction. Still, the electronic charge redistributes over the
pore length to ensure that the electronic potential is the
same everywhere, i.e., to achieve an equipotential pore-
wall surface. This redistribution can lead to regions of neg-
ative and positive charge, i.e., the membrane pore is polar-
ized, similar to the polarization of conducting particles [15]
and porous carbons [16]. The chemical charge, however,
has a very different origin and only depends on the compo-
sition of solution and the pore-wall chemistry. In a typical
scenario, the hydronium ion (proton) is the most com-
mon charge-determining ion and thus the chemical charge
usually has a strong dependence on the local pH in the
pore. Dynamics of surface (de)protonation is usually much
faster compared with dynamics of ion transport, and thus
instantaneous chemical equilibrium is commonly assumed
for the generation of chemical charge (charging dynamics
may be important in certain cases, for example, Ref. [17]).
For a steady-state transport problem, even if the chemical
equilibrium on the surface is only slowly established, we
can still describe the chemical charge by an equilibrium
adsorption model, such as the Langmuir isotherm.

In general, both types of surface charge are nonuni-
formly distributed along the pore. To ensure equipotential
on the pore wall, the electronic charge is redistributed to
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compensate for the nonuniform potential distribution in
the solution of the pore interior. Meanwhile, the chemical
charge varies with the pH in the solution. The distribu-
tion of the surface charge strongly influences the transport
of ions and the performance of the membrane. Some sim-
ple scenarios of varying surface charge have been studied,
for example, a step-wise distribution for asymmetric mem-
branes [18] and a linear distribution [19]. However, this
effect is still far from being well understood, manifested
by the prevailing assumption of constant surface charge
in modeling ion transport in the membrane, both within
the two-dimensional (2D) space-charge (SC) model [20—
22], and the one-dimensional (1D) uniform potential (UP)
model [23-25]. In this work, we extend the UP model
by incorporating both the electronic charge (induced by
the electric field in the pore solution) and the chemical
charge (determined by local pH) to investigate the effect of
surface charge on transport of ions through the membrane.

The distribution of surface charge along the membrane
pore strongly affects membrane transport properties, such
as the membrane potential, which is the potential differ-
ence between two electrolyte solutions with different salt
concentrations separated by the membrane. In the present
work, we consider the membrane potential at a condition of
zero ionic current. The measurement of membrane poten-
tial is useful in characterizing the ionic permselectivity of
ion exchange membranes [26], interpreting the measure-
ment of potentiometric ion sensing [27], evaluating the
maximum power that can be generated in reverse electro-
dialysis (RED) [28,29], and modulating cellular activities
as a key biophysical signal in biological cell membranes
[30]. Conventionally, the membrane potential is ascribed to
the two Donnan potentials due to the electrical double lay-
ers at the membrane-solution interfaces and the diffusion
potential within the membrane due to different mobilities
of ions [31,32]. Recently, Ryzhkov et al. [33] reported a
new mechanism for the generation of membrane poten-
tial in polarizable conductive membranes via the induced
electronic charge. The redistribution of electronic charge
enhances the membrane potential when there is a differ-
ence in mobilities between the cation and anion. In the
present work, we demonstrate that our extended UP model
can quantitatively capture this effect for small pores by
comparing with the experimental data and the results of
the full two-dimensional space-charge model. Moreover,
we show that the variation of chemical charge due to gra-
dients in the proton concentration also contributes to a
potential difference within the membrane, and gives rise
to a decrease of membrane potential at large salt concen-
tration ratios, which has been observed in previous work
[25,34], but has not yet been explained. In addition, for
cases with both electronic and chemical charge, we pro-
pose a dimensionless parameter to quantify the ratio of
the electronic charge to the chemical charge and study
the performance of the membrane in generating osmotic

power from a salt concentration difference by a reverse
electrodialysis process.

Our paper is organized as follows: the framework of our
model is introduced in Sec. 11, the main results and analysis
are presented in Sec. III, where we discuss first the case
of only electronic charge, then the case of only chemical
charge, and finally the general case where both types of
charge play a role. Section IV concludes the work.

II. THEORETICAL MODEL

Let us consider a membrane separating two reser-
voirs with aqueous solutions of the same monovalent and
symmetric (1:1) electrolyte of concentrations Cj; and Cj,
respectively (C, = Cj). The reservoirs are maintained at
equal hydrostatic pressures. The membrane is modeled as
an array of pore channels of length L, and characteristic
pore size H,. Depending on the cross-section geometry,
H, corresponds to the radius for a cylindrical pore, or
the width of a planar channel for a slit pore. We assume
that at each position along the pore, the Debye length
Ap is of the same order of, or larger than, the charac-
teristic size H,. The Debye length follows from Ap =
VeeoR T/2F 2Cy, where ggq is the dielectric constant of
the solution, R, is the ideal gas constant, T is tempera-
ture, F' is the Faraday constant, and Cj is the characteristic
concentration in the problem. In this case, electric poten-
tial @, cation concentration C; and anion concentration
C_, as well as hydrostatic pressure P can be assumed uni-
form in any cross section of the pore, so they are functions
of axial coordinate only. This approach is known as the
UP model or the “fine capillary pore model” and is some-
times called the Teorell-Meyer-Sievers (TMS) model [35],
though the TMS model does not include fluid flow. The UP
model is a simplification of the space-charge model, which
solves the 2D Navier-Stokes (NS) and Poisson-Nernst-
Planck (PNP) equations using the approaches of virtual
variables, i.e., hypothetical variables of a solution equili-
brated with adjacent differential elements of the membrane
[20-22,36,37].

As shown in Fig. 1, we consider two charging mecha-
nisms at the surface of the membrane pores: the electronic
charge o, [C/m?] in the electron-conducting pore wall, and
the chemical charge o, [C/m?] originating from the depro-
tonation of surface groups S (e.g., hydroxylic or carboxylic
groups) according to a reversible reaction

SH= S +H'.

The equilibrium is characterized by the dissociation con-
stant K and the maximum number of ionizable sites N
per m?,
K = [STI{H"}/[SH], (la)
N =[SH]+[S7], (1b)
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FIG. 1. Structure of the electrical double layer with electronic
and chemical charge on the pore wall and ionic charge in the
solution.

where [SH] and [S7] are the surface concentrations of
nonionized and ionized surface groups, while {H'} is
the proton concentration near the pore surface, which is
also denoted as Cy+ below. Combining Egs. (1) leads to
the density of chemical surface charge described by the
well-known Langmuir 1-pK adsorption isotherm

1

O, = —¢ [S_] = —QNW,

)

where e is the elementary charge, pK = —log,, K and
pH = —log,, Cy+ with K and Cy+ in the unit of M,
i.e., mol/l.

It is further assumed that the chemical charge is located
at the interface between a dielectric layer, which is referred
to as the Stern layer, and the diffuse layer, and thus sep-
arated from the electronic charge in the conductive pore
wall. Similar models including both ionic and electronic
charging processes have been developed for capacitive
deionization in Ref. [38], for electrofluidic gating of chem-
ically reactive surface in Refs. [7], [39], and [40] and
for oxidized metal or semiconductive oxides in Refs. [41]
and [42].

The electronic charge induced at the pore wall is given
by a linear relation considering that no charge exists inside
the dielectric Stern layer,

O = CS (CDW - cDs) ) (3)

where @,, is the potential in the electronic conducting pore
wall, and @; is the potential at the Stern plane, which is
the intersection of the Stern layer and the diffuse layer.
In the UP model, @, coincides with the potential through-
out the aqueous phase in the pore (&, = @), see Fig. 1,
while Cgs is the capacitance of the Stern layer, which is

expected to depend on the permittivity &g, thickness §,
and geometry of the Stern layer. The total surface charge
entering the electroneutrality condition is 0 = o, + o,, and
the corresponding volumetric density of the wall charge
is given by 20/FH,. If there are no chemical surface
groups, i.e., N = 0 and thus o. = 0, the surface can only
be charged electronically so that o = o,, while in the other
limit, the electronic charge is set to zero along the pore
and 0 = o.. In addition, the present model treats the chem-
ical charge as a smeared-out surface charge, and we do
not consider its pointlike character. This is a reasonable
approximation as long as the surface-charge density is rel-
atively large, but may fail for low charge density such as
biological lipid membranes, where a point-charge model
for the chemical charge has to be employed [43].

To proceed further, let us introduce dimensionless vari-
ables by choosing the characteristic scales for length L,,
for potential @7 = R, T/F, for concentration and volumet-
ric charge density Cy, for pressure CoR, T, for fluid velocity
D/L, and for ion fluxes DCy/L,. Here D = /D, D_ is
the average diffusion coefficient, where D, and D_ are
the cation and anion diffusion coefficients. The chemical
and electronic charge densities in dimensionless form are
written as

20, N
Xc = = — . 4
CoFH, ~ 1+ 10vK—rH (42)
200 _ 5 (B — ¢ (4b)
e = =cC w D
CoFH, ~— °

where N = 2N(CyN,H,)~" is the dimensionless density
of surface group sites, cg = ZC'SRgT(ConHp)_1 is the
dimensionless Stern-layer capacitance, and ¢,, and ¢ are
dimensionless potentials corresponding to @,, and @. The
averaged electronic charge along the pore length is defined
as X, = fol X, dz. When the membrane is not charged
externally by injecting or withdrawing electrons to or from
the conductive membrane pore walls, one has X, = 0.
However, even then the local value X.(z) can be nonzero
since electrons are redistributed along the surface in order
to ensure equipotential in the pore wall [33,44]. The vol-
umetric density of wall charge is X = X. + X,, which is
opposite in sign to the density of ionic charges c; — c_ in
the pore because of total charge neutrality

cp—c +X =0, 5)

where we assume that the concentrations of Ht and OH™
are much lower than the concentrations of cations and
anions arising from salt dissociation, so that their presence
is not taken into account in the electroneutrality condition
(5) and neither in the total ionic flux and ionic current.
The equations of the UP model for transport of water
and ions at steady state with unequal diffusion coefficients
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and variable surface charge are given by Ref. [45]

__ld Xd¢
T Qadz Oad:’ (62)
Jjs = cru — cosh(§) a;lizT — sinh(§) dd_)z(
) d¢
+ [cosh(£) X 4+ sinh(§) c7] a (6b)
Jeh = —X u + sinh(§) diT + cosh(§) g
dz dz
— [cosh(&) cr + sinh(§) X ] fi_f , (6¢)

where u is the fluid velocity along the pore direction z, j; =
J+ +Jj— is the total solute flux of cations and anions, j., =
Jj+ —j— 1s the flux of the ionic charge, c; = ¢4 + c_ is the
total concentration of cations and anions, p is the dimen-
-1
sionless hydrostatic pressure, o« = uD (CORgTsz) is
the dimensionless viscosity parameter with u the fluid vis-
cosity, and £ = In («/D_ /D+) is a factor accounting for
the effect of unequal diffusion coefficients. A shape fac-
tor © is introduced to account for different cross-section
geometries: ® = § for a cylindrical pore and ® = 12 fora
slit-shaped pore. Note that u, j;, and j ., are constants along
the pore in the current model, while for a dynamic problem,
u and jg are still invariants due to the continuity of fluid
flow and electric current, but j; varies along the pore. Fur-
thermore, we neglect the possible relevance of upstream
and downstream diffusion boundary layers [45].

To account for the variation of the chemical charge
determined by the local pH in the solution, we need
to supplement Egs. (6) by the transport equations of
H™ and OH™ ions including advection, diffusion, and
electromigration [46],

d d
jH+ =Cy+t U — ;‘l+ <C_HZ+ + Cyt+ _f) , (7a)

. , dcoy- do
Jon— = Cou- U — Dy ( OZH — CoH- E) , (7b)

where jy+ and joy- are the dimensionless fluxes of H
and OH™ scaled by DCy/H,, Dy = Dy+/Dand Dy, =
Doy-/D are the dimensionless diffusion coefficients of
H' and OH™, respectively (Dy+ = 9.32 x 107 m?/s,
Doy = 526 x 1072 m?/s [47]). At steady state, the flux
of Ht and OH™ into the surface due to ionization is
zero. Mass conservation of Ht and OH™ requires that
the difference between the fluxes, i.e., the acidity flux,
Jac =Ju+ — jou-» 1s constant. We replace the concentration
of OH™ according to the water dissociation equilibrium
¢+ coy- = Ky, where K, = K,/ Cy? is the dimensionless

equilibrium constant. It leads to

y (dcj* +cH+d—¢>_ ®)

In the current model, the resulting variation of pH along
the pore described by Eq. (8) determines the chemical
surface charge via the Langmuir isotherm (2), and this
chemical charge in turn couples back into various transport
properties. However, except for this back coupling, there
is no other direct effect of the transport of HT and OH™.
For typical conditions with moderate pH values (approx-
imately 5—9), this is a valid approximation as the salt
concentration is much higher than that of the proton and
hydroxide ions. Besides, for acidic conditions when the
proton is dominant (cH+ > /I?;), Eq. (8) reduces to (7a).
Now we specify the boundary conditions of the problem.
The membrane separates two reservoirs with dimension-
less salt concentrations c¢; and ¢;, as well as hydrostatic
pressures p, and p;, which are assumed to be the same.
The concentrations of H ions in the reservoirs are set
by specifying the pH values. The membrane potential
A¢ is defined as the potential on the low concentra-
tion side minus that on the high concentration side. Due
to the large aspect ratio of the pore geometry (L, >
H,), the membrane-solution interfaces are treated using
the classical Donnan model [48], in which the following
boundary conditions are set at the two pore ends:

P (2) = Pres — 2¢res + c1(2), (9a)

c7(2) = 2¢res cosh [A¢ponnan (2)] (9b)
Cu+(2) = C+ res ©XP [~ APDonnan (2)] o1

pH(2) = pH,s + A¢ponnan(2)/ In 10, (%)

where the pore entrance (z = 0) is connected to the high-
concentration reservoir (res = /) and the pore exit (z = 1)
is connected to the low-concentration reservoir (res = /).
The Donnan concentration jumps are described by condi-
tions (9b) and (9¢), while condition (9a) corresponds to the
osmotic pressure jump. The Donnan potential A@ponnan 1S
defined as the potential within the pore minus the potential
outside at the membrane-reservoir interface. By inserting
€+ (2) = Cres €Xp [FAPDonnan (2)] into the charge neutrality
condition (5), we have

X(Z) = 2Cres sinh [A¢D0nnan(z)] . (10)

Further inserting the expressions for the chemical and
electronic charge, Eq. (4), and boundary conditions (9c)
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leads to
B N
1 + 10PK—PHres exp [— Adponnan (2)]
+cs [¢w - ¢(Z)] = 20Cres sinh [A¢D0nnan(z)] . (1 1)

After setting the reference potential at the high-
concentration reservoir to zero for simplicity, Eq. (11) can
be solved with respect to A¢ponan(z = 0) = ¢(0). The
potential ¢ (1) at the other end is found by solving the
transport equations in the pore, while A¢ponnan(z = 1) is
again found from the solution of Eq. (11). The mem-
brane potential A¢ is calculated as the potential variation
across the inner coordinates of the membrane ¢p(z = 1) —
¢ (z = 0), plus the Donnan potential jumps at each end, i.e.,
adding A@ponnan(z = 0) and subtracting A@ponnan(z = 1).

To solve the system, we substitute dcr/dz in Eq. (6¢)
using Eq. (6b), express dX /dz as the sum of the electronic
and chemical parts by Eq. (4) and further replace dcy+/dz
using Eq. (8). Then we obtain an ordinary differential
equation for d¢p /dz,

ﬁi—‘b = sinh(§) (cru — j;) — cosh(§) Xu
Z

— cosh(§) jen + /112, (12)
where
dx. NK
.fl (CH+) = = ~\2°
ch+ (CH+ + K)
cy+ —I?W/c +) U — Jae
.fz(CH+) = ( H, ; H") 7 >
DH+ + l)oﬂfl<w/cl_pL
filer,eq+) = cr + ¢cs + ficg+, (13)

and K = K/C, is the dimensionless equilibrium constant
for surface deprotonation. The terms on the right-hand
side of Eq. (12) represent the potential difference in the
pore caused by diffusion of salt ions with unequal mobili-
ties, solvent flow (streaming potential), Ohm’s resistance
and variation of surface charge, respectively. If the dif-
fusion coefficients of ions are the same, i.e., £ = 0, the
potential for unequal diffusion vanishes, while if the fluid
velocity u goes to zero, the streaming potential caused by
the flow of solute in the diffuse layer, which is not elec-
troneutral, disappears. Formally, the scale factor f3 can
be seen as an effective conductivity consisting of three
parts representing contributions from solute concentration,
electronic charging, and chemical charging. The electronic
charging process increases the total conductivity by redis-
tributing the electronic charge in the conducting wall to
generate a reverse electrical field and reduce the poten-
tial drop in the pore, while the chemical charging process
modifies the potential drop through transport of proton,

which modulates the chemical surface charge. The role of
chemical charging is more complicated as it not only adds
to the conductivity, but also affects the potential difference
by the term ff5.

Then, we rearrange the equations of the UP model (6)
and the flux equation (8) for H" to a set of ordinary
differential equations

d _ s

- = —8au +X—, (14a)
d
diZT = sech(&) (cru — j,) — tanh(€) fi f5
+ [X + tanh(§) 3] 6;—?’ (14b)
d d
f;; p _CH+d_j (14c)

Note that dX /dz has been expressed through d¢/dz and
dey+ /dz using X = X, + X, and Eq. (4), and dcy+/dz is
further replaced using Eq. (14c). The shooting method is
used to solve the problem by integrating Eq. (14) from
z = 0 to z = 1 and matching the hydrostatic pressure, salt
concentration, and pH in the reservoir connected to the
pore exit.

II1. RESULTS AND DISCUSSION

In this section, we analyze the predictions of the steady-
state uniform potential model for different charging con-
ditions on the pore walls. The aqueous NaCl and KCI
solutions are considered with diffusion coefficients Dy,+ =
1.33 x 107 m?/s, D+ = 1.96 x 107° m?/s, and D¢~ =
2.03 x 107° m?/s [47]. First in Sec. IIT A, we show the
results for the case of only electronic charge demonstrated
in Fig. 2(b) and compare them with the 2D space-charge
model as well as the experimental data. Next in Sec. 111 B,
we study the case of only chemical charge determined by
local pH [Fig. 2(c)]. After that, in Sec. III C, we discuss
more general scenarios when both electronic and chemical
charge play a role. Most results are for a condition of zero
applied electric current through the membrane j., = 0,
and the resulting membrane potential is presented as the
main outcome. In Sec. III D, we also present results for a
nonzero electric current to analyze the electric power pro-
duction from a salt concentration difference, i.e., “osmotic
power” or “blue energy” [10].

A. Case of only electronic charge

Let us start with the case where only electronic charge is
on the pore walls. Throughout this section, we assume that
the total electronic charge X, is zero, i.e., no extra electrons
are injected or withdrawn from the membrane.

If the mobilities or diffusivities of the cation and anion
are different, there is a spontaneous electrical field gener-
ated to ensure local electroneutrality when the ions diffuse
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(a)

A QDonnan

FIG. 2. Typical profiles of electrical potential for the zero-
current condition in a membrane pore (a) without surface charge,
(b) with only electronic charge, and (c¢) with only chemical
charge. The ions diffuse from the left high-concentration reser-
voir to the right low-concentration one. A®gyr is the diffusion
potential of an uncharged pore with nonconductive surface, and
AD@ponnan 1S the Donnan potential at the membrane-reservoir
interface.

from the high-concentration side to the low-concentration
side. For NaCl and KClI, anions move faster than cations,
so that the electrical potential drops along the membrane
to reduce the speed of the anions and raise the speed of the
cations [Fig. 2(a)]. For an uncharged, nonconductive mem-
brane, this diffusion potential across the membrane can be
calculated as [33]

Adgy = ¢t — D= G
it =¢r - In— =
WD+ D

exp(-26) ~ 1, G
a  ap—2+1 N C
(15)

If the membrane pore wall is electron conducting, the
spontaneous electrical field that develops in the pore inte-
rior exerts an electrical force on the electrons in the pore,
which will redistribute to guarantee equipotential in the
conducting pore wall. For the case illustrated in Fig. 2(b),
the diffusion potential generates an electrical force along
the membrane and pushes the electrons in the membrane
from the low-concentration side to the high-concentration

side. This leads to a negative (positive) surface charge
near the high-concentration (low-concentration) side. Con-
sequently, the Donnan potentials at both ends, acting in
the same direction, enlarge the total potential drop across
the membrane. This enhancement effect has been reported
for the C-Nafen membrane [33], which was prepared from
alumina nanofibers covered by a conductive carbon layer.
Figure 3 shows the comparison of measured membrane
potential with model predictions based on the 1D UP
model and 2D SC model for an 8-nm-radius pore. Note
that even for KCI with a minor difference in diffusion
coefficients, which are usually ignored in some theoreti-
cal studies, the membrane potential can be enhanced to
a few times or even dozens of times with the increase of
the concentration ratio. The 2D SC model shown as blue
lines has no Stern layer [33], or equivalently, assuming
Cs — oo. Nevertheless, the Stern layer is necessary in the
1D UP model to relate the charge density with the poten-
tial difference @,, — @ across the interface. Three different
values of the Stern-layer capacitance Cy are used in the
UP model shown as dashed lines in Fig. 3. A good agree-
ment is obtained for Cs = 1 F/m?, and this value is used
throughout the paper. Theoretically, the capacitance Cg in
the UP model can be pushed to a large value to make a
direct comparison with the SC model, and the difference
between them is ascribed to the one-dimensional assump-
tion for a pore with finite radius. Figure 4 further shows a
comparison between the UP model and the SC model of
the profiles of pressure, concentration, electrical potential,
and surface-charge density in a pore with NaCl and radius
H, =8 nm, C;, =10 mM, C; =1 mM. The two have
quantitative agreement and it is found that this agreement
is reasonably good for pore sizes smaller than 10 nm with
the concentration up to 1 M. In this sense, the capacitance

(a) 005 (b) o
o5 LT R S NaCl
-25 25} N e,
= BRI W T
S -50 i S -50¢t W -
E E No"
\
575 i 578 N o
O Expt. \\ O \\\
—2D SC N
-100H{—205C s 1 oot N\
=== Ay Cg=10 F/m2™ Co=10Fm>* “¥q
125 1 2 3 3 1% 1 2 3 4
FIG. 3. Membrane potential of the conductive C-Nafen mem-

brane for different concentration ratios in (a) KCl and (b) NaCl
aqueous solution. Data points and results of the 2D space-charge
model without Stern layer shown in solid blue lines are from
Ryzhkov et al. [33]. Dashed red lines are results of the 1D uni-
form potential model with Cs = 0.1, 1, 10 F/m?, and dash-dotted
lines are the diffusion potentials in uncharged pores with a non-
conductive surface. H, = 8 nm, C; = 0.1 mM for KCl and 1 mM
for NaCL
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FIG. 4. Profiles of (a) pressure, (b) cation and anion concentra-
tion, (c) electrical potential, and (d) surface-charge density in an
8-nm-radius pore filled with NaCl at zero current. C, = 10 mM
and C; = 1 mM. Solid lines are results of the 2D space-charge

model without Stern layer, and dashed lines are results of the 1D
uniform potential model with Cs = 1 F/m?.

in the UP model can be seen as a good fitting parame-
ter, which mitigates some error from the one-dimensional
assumption.

Figure 5 shows the effect of concentration, pore radius,
and diffusion coefficients on the membrane potential. For
all the conditions, the UP model agrees well with the
SC model. When the reservoir concentration or the pore
radius increases, the Donnan potential at the membrane
and reservoir interface decreases according to

A®Ppopnan = sinh™! ( (16)

<)
FH,Crs )’

where o is the surface-charge density at the pore end and
Cies 1s the corresponding reservoir concentration. There-
fore, the magnitude of the membrane potential declines
as the enhancement effect via the Donnan potential drops.
When the ratio between the diffusivities D, /D_ reduces,

increase of the electronic surface-charge density o,. From
Eq. (16), it is clear that the Donnan potential, and thus the
membrane potential is enlarged.

B. Case of only chemical charge

In this section, we consider the case where the mem-
brane is charged only by chemical groups. The charge
regulation by pH is considered by incorporating the trans-
port of protons and hydroxide ions described by Eq. (8). It
has been shown in recent studies that this regulation mech-
anism has significant effect on ionic conductance [49] and
in electro-osmotic hysteresis [46].

The pH in both reservoirs is kept the same in all cases.
However, due to the Donnan potentials at each end, the
proton concentration (pH) increases (decreases) at the low-
concentration end [see Fig. 7(a)], lowering the surface-
charge density via combining with the surface groups. The
variation of surface-charge results in an electrical field act-
ing opposite to the concentration gradient, so the potential
increases along the pore, as depicted in Fig. 2(c). This
corresponds to the term f\f,/f; in Eq. (12). If the surface
charge is not dependent on pH, this term vanishes and it
reduces to the constant surface-charge model.

Figure 6 shows the membrane potential across 4-nm and
26-nm nanoslit channels for different concentration ratios,
with the lower concentration fixed in (a) and the higher
concentration fixed in (b). In general, as the concentration
ratio increases, the membrane potential increases mainly
due to the contribution of the Donnan potential. However,
as the concentration ratio exceeds around 100 with a fixed
lower concentration [Fig. 6(a)], the Donnan potential at the
high-concentration end drops to around zero because the
surface charge is much lower than the ionic charge carried
by cation and anions. Therefore, the membrane potential
reaches a plateau with a further increase of the concen-
tration ratio. This scenario is predicted by the constant

the diffusion potential becomes stronger and it leads to an  surface-charge model with 0 = —2 mC/m?.
(@) o (b) o (©) log,(C,/C))=1
N'~.~.N ‘"s.N.N 0910( h I—)_’ -,
-25 "Seae -25 eel =
N\ "~ - -50
S 50— S _ S
z 50 2D SC \\ 10 Z 50 2
£ - - 1DUP .| = \ = 100
S e AD {4 = S
4 -75 diff N\ 1 4 -75 N NG 1«
N\ N\
100, _g N 100t —150
p=8nm C:0.1mm\ C;=1mM Hp=1nm\ p=8nmC/=1mM
-125 . . -125 -200 : : ,
0 1 2 3 0 1 2 3 025 05 075 1
Iog10(Ch/Cl) Iog10(Ch/C/) D+/D_

FIG. 5.

Parametric study of (a) concentration (H, = 8 nm), (b) pore radius (C; = 1 mM), and (c) diffusion coefficients (H, =

8 nm, C; = 0.1 mM) on membrane potential in cylindrical nanopore filled with NaCl. Dashed lines are results of the uniform potential
model with Cs = 1 F/m?, solid lines are that of the 2D space-charge model without Stern layer, and dash-dotted lines are the diffusion

potentials in uncharged pores with a nonconductive surface.
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FIG. 6. Membrane potential across 4-nm- and 26-nm-wide slit
channels filled with KCI. Experimental data points are from
Kim et al. [25] at zero current. Solid lines are results of the
uniform potential model with pH-dependent chemical charge
(silica surface with pK = 7.5 and N = 8 nm~2, pH = 5.6 for
both reservoirs), while dashed lines are results of the constant
surface-charge model (6 = —2 mC/m?).

However, the experimental data in Fig. 6(a) shows a
systematic decrease of the membrane potential when the
concentration ratio becomes relatively large for both 4-nm
and 26-nm channels. This decrease of membrane potential
can be partly captured by the current model, in which the
proton transport and the variation of chemical charge are
considered. The reason behind this is that the contribution
of potential increase owing to the variation of chemical
charge diminishes as the conductance of the pore increases
with the reservoir concentration. Specifically, when the
concentration Cj, is relatively low, the co-ions are mostly
repelled from the pore and the conductance is controlled
by the surface-charge density. Nevertheless, when the con-
centration Cj; becomes higher, both the counter-ions and
co-ions can go into the pore and the conductivity in this
case is controlled by the ionic charge, thus leading to a dra-
matic increase of the total conductance. This weakens the
potential increase owing to the variation of the chemical
charge (Fig. 7).

The current UP model achieves a better agreement with
the experimental data compared with the constant surface-
charge model without any fitting procedure. Parameters
used in the 1-pK Langmuir isotherm, namely, the equi-
librium constant of surface deprotonation and the number
of surface sites, are well-constrained values reported in

— (b)100

0 02 04 06 08 1
z z

0 02 04 06 08 1

FIG. 7. Profile of (a) pH and (b) electrical potential of a 4-nm-
wide slit channel with chemical surface charge. C; = 0.1 mM
and Cj, increases from 10, 100 to 1000 mM.

the literature [1]. One may wonder if the assumption
that protons and hydroxide ions do not contribute to the
charge density and flux leads to the unexpected decrease
of membrane potential in the current model. Considering
the relatively high salt concentration and medium pH, this
assumption should be reasonable. In fact, we performed
further simulations using a full multicomponent model
including protons and hydroxide ions in charge density and
flux. This extended model gives quantitatively consistent
results with the current model and predicts a decreasing
membrane potential as well.

Another possible reason for the decrease of the mem-
brane potential is due to incomplete mixing in the reser-
voir and nonideality of the electrolyte solution at high
concentration, which are out of the scope of this paper.

C. Combination of electronic and chemical charge

Let us now consider the case when the total surface-
charge results from the presence of both electronic and
chemical charge. Although they are not directly coupled,
we have to determine them consistently since they are
correlated by the the potential distribution in the pore.

The factor N/cs is used to characterize the ratio
between the electronic and the chemical charge, where N
is the dimensionless number of surface sites for chemical
charge, and cg is the dimensionless Stern-layer capaci-
tance. In fact, the amount of the chemical charge can be
characterized by the maximum possible charge density,
i.e., N e, while the amount of the electronic charge can be
characterized by the product of the capacitance Cs and the
characteristic potential R,T/F. The ratio between the two
gives N /cs.

Figure 8 shows the change of the membrane potential
with N/cg for different pH. In general, if NV > cg, the
chemical charge dominates and becomes the main mecha-
nism for membrane potential generation [Fig. 2(c)], while
if N « cg, the electronic charge dominates and the charg-
ing mechanism follows that shown in Fig. 2(b). In the
chemical-charge-dominated regime, the difference in ion
mobilities giving rise to the diffusion potential plays a
minor role, so that the membrane potential is the same
for both KC1 and NaCl. However, the difference in mobil-
ity, determining the enhancement effect, strongly influ-
ences the membrane potential in the electronic-charge-
dominated regime. In addition, due to the pH depen-
dence of chemical charge, the transition shifts towards
the chemical-charge-dominated regime if the reservoir pH
increases.

D. Energy generation from concentration difference

If connected to an external load, a permselective mem-
brane can convert the osmotic energy from a concentra-
tion difference to electrical energy. If the membranes are
stacked in a way of alternating permselectivity, it forms
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FIG. 8. Membrane potential with both electronic and chem-
ical charge for different N /cs ratios at zero current with Cs
fixed at 1 F/m?>. N is the dimensionless number of surface
sites for chemical charge, and cgs is the dimensionless Stern-
layer capacitance (C, = 10 mM, C; = 0.1 mM, pK = 7.5, and
X.=0).

the process of reverse electrodialysis [10,21,28,29]. The
power density of this conversion is the product of the
electric current density and the potential difference across
the membrane, which is the membrane potential at open-
circuit condition, i.e., zero electric current. The power
density reaches zero at both open-circuit condition and
short-circuit condition, where the maximum electric cur-
rent is reached. It typically follows a parabola profile with
the electric current, and the maximum power density is
achieved at around half of the maximum current density
(Fig. 9). For a negatively charged membrane (i.e., cation
selective), the cation is the main charge carrier and the
energy-conversion process is operated at a positive cur-
rent (right branch of Fig. 9). Extra negative electronic
charge can be supplied to the pore wall to improve the
performance of the membrane. As shown in Fig. 9(a), the
maximum power density almost doubles from 22 mW /m?
to 42 mW /m? when the extra volumetric electronic charge
density X, = X, C, reaches —1 mM in the pore volume,
equivalently, about —0.38 mC/m?. At the same time, the
corresponding current density for the maximum power
density shifts from 1.06 A/m? to 1.63 A/m?. In contrast,
if electrons are withdrawn from the pore, the membrane
becomes positively charged (i.e., anion selective) and the
direction of the electric current is reversed to generate
power (left branch of Fig. 9). Because of the negative
chemical charge, it requires more electronic charge to
reach the same power density for this case.

The N/cg ratio in Fig. 9 is about 6.2. In this case,
according to Fig. 8(b), the membrane potential is very sen-
sitive to the change of pH. A slight increase of pH to 6
gives rise to more negative chemical charge and makes
the power density higher when / > 0. At the same time, it
requires further withdrawal of electrons in comparison to
the case of pH = 5.5 to overcome the chemical charge and
change the polarity of the membrane. Note that the con-
centrations used in Fig. 9 (C;, = 1 mM, C; = 0.1 mM) are

I (A/m?)

FIG. 9. Osmotic power density generated from a concentra-
tion difference (C;, = 1 mM, C; = 0.1 mM) by an 8-nm-radius
pore filled of NaCl at (a) pH = 5.5 and (b) pH = 6. The pore
bears both electronic charge (Cs = 1 F/m?) and pH-dependent
chemical charge (N =1 nm~2, pK = 7.5). A different elec-
tronic charge is supplied or withdrawn to reach a certain total
volumetric electronic charge density X :

relatively low, so only a small amount of extra electronic
charge supplied makes a large impact on the power density.
At a higher salt concentration, however, more electronic
charge is required to increase the power density.

The overall energy efficiency of this conversion process
is defined as [20,21,37]

eh A
= Jnld? .
Jions ll’l(Ch/C]) - 2“(611 - C[)

which is the ratio of the generated electrical power to
the Gibbs free energy of mixing taking into account of
the adverse effect of advection. It measures the effec-
tiveness of the membrane in overcoming the dissipation
effect by entropy generation. Note that the energy con-
sumption by supplying the extra electronic charge is not
considered, since the charge density is fixed in the energy-
generation process if there is no electron leakage by
Faradaic reactions. Like the power density, the energy effi-
ciency increases with the addition of negative electronic
charge. Energy efficiency in Fig. 10 follows a similar trend
as the power density in Fig. 9. When operated at positive
current, the energy efficiency reaches 30% for a current
density of 1.2 A/m? at pH = 5.5, and 44% for a current
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FIG. 10. Energy efficiency of osmotic power generated from
a concentration difference (C;, = 1 mM, C; = 0.1 mM) by an 8-
nm-radius pore filled of NaCl at (a) pH = 5.5 and (b) pH = 6.
The pore bears both electronic charge (Cs = 1 F/m?) and pH-
dependent chemical charge (N = 1 nm~2, pK = 7.5). A different
electronic charge is supplied or withdrawn to reach a certain total
volumetric electronic charge density X :

density of 1.5 A/m? at pH = 6 with an extra total volu-
metric electronic charge density of —1 mM. In contrast,
when charged positively and operated at negative cur-
rent, the energy efficiency declines to less than 5% with
)_(: =5mMatpH=135.5 and)_(: =15mMatpH = 6.
Figure 11 shows the optimum current density to reach
the maximum power density and energy efficiency when
the pore is charged with different total electronic charge

(b) 6
~ 4
&
£
<
\é 2 pH =6
0 pH=55
-2 -2
-5 25 0 25 5 -5 25 0 25 5

Xg (mM)

FIG. 11. Optimum current density at (a) maximum power den-
sity and (b) maximum energy efficiency with different total
electronic charge density X : H,=8mnm, C, =1 mM, C; =
0.1mM, Cs = 1F/m?>, N = 1nm~2, pK = 7.5.

density X Z While the optimum current density for power
density Ip_, is sensitive to a change in X Z, the optimum
current density for energy efficiency 7, is much less
dependent on X : A good operation condition for the cur-
rent density may be in between these two values Ip,,,. and

I

Nmax *

IV. CONCLUSIONS

In this work, we develop a theoretical description of
ion transport in nanoporous membranes in the presence of
both electronic and chemical charge on the pore surface.
The former is induced by the electrons in the conductive
pore surface, while the latter originates from ionization
of surface chemical groups. Even if no external charge is
injected, the electronic charge can redistribute along the
pore, leading to intriguing profiles in ion concentration
and potential (see Fig. 4). The pH-dependent chemical
charge is regulated by proton transport, giving rise to a
potential difference within the membrane. When both are
present, the two types of surface charge are correlated by
the potential distribution in the pore.

The electrical potential across the membrane is inves-
tigated at a zero electric current condition. The elec-
tronic charge is found to strongly enhance the diffu-
sion potential through redistribution of electrons, even
for KCl with a minor difference in diffusion coeffi-
cients, while the pH-dependent chemical charge leads to
an increase of the electrical potential within the mem-
brane if the pH in both reservoirs is kept the same.
Our one-dimensional model shows good agreement with
both experimental data and results of the two-dimensional
space-charge model as long as the pore size is relatively
small compared with the Debye length. In addition, the
performance of the membrane used for energy conver-
sion from a concentration difference is also investigated
for nonzero electric currents. By tuning the electronic
charge of the membrane, the selectivity of the mem-
brane can be controlled. For example, if extra nega-
tive (positive) charge is supplied to the cation-selective
(anion-selective) membrane, the power density and energy
efficiency for RED can be improved. This flexible con-
trol of the membrane selectivity may open opportunities
for new designs in RED and other relevant applica-
tions.
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