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Abstract 
In this study, tebuconazole (TEB)-loaded poly-3-hydroxybutyrate (P3HB)-based microparticles were 

developed and comprehensively characterized. TEB-loaded microparticles (10, 25, and 50%) were prepared using 
double emulsification technique. Encapsulation efficiency of TEB varied from 59 to 86%. As the loading amount 
was increased, the average diameter of microparticles increased too, from 41.3 to 71.7 µm, while zeta potential was 
not influenced by TEB loading, varying between -32.6 and -35.7 mV. TEB was released gradually from 10, 25, and 
50% loaded particles, and over 60 days, 25, 43, and 38%, respectively, of the initially loaded amount was released. 
The data obtained from in vitro TEB release were fitted to different mathematical models. It was shown that the 
release profiles of TEB could be best explained by Zero-order, Higuchi models and Hixson–Crowell. The antifungal 
activity of the P3HB/TEB microparticles against phytopathogenic fungi F. moniliforme and F. solani was 
comparable to that of the free fungicide. Thus, hydrophobic agrochemicals (TEB) can be effectively encapsulated 
into P3HB microparticles to construct slow-release formulations.  
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Introduction 
Over the past decade, uncontrolled use of pesticides in agriculture has caused bioaccumulation of 

agrochemicals in soil, leading to the loss of biodiversity and destroying habitats for living organisms [1]. Fungicides 
are pesticides used to control fungal diseases of plants by, e.g., inhibiting fungal spore germination. The commonly 
used fungicides are triazols (tebuconazole, hexaconazole, paclobutrazol, etc.). Preventative applications of triazol 
fungicides are more effective than curative applications. 

In spite of the high efficacy of these fungicides, they have been found to produce a toxic effect on seed 
germinating capacity and inhibit plant growth [2-4]. The unfavorable effect occurs via the following mechanism: 
fungicides shift the balance of phytohormones in plant tissues and inhibit biosynthesis of gas, causing a temporary 
increase in the content of abscisic acid in plants [4-6]. Moreover, the wide use of agricultural fungicides poses 
potential contamination risk to both soil and aquatic ecosystems [1, 7-8].  

Innovative approaches are needed to manage contaminated ecosystems. Fungicide toxicity to the 
environment can be reduced by using novel polymeric carriers enabling controlled release of the fungicide, which 
both increases the efficacy of agrochemicals and minimizes their adverse effects on the environment [9-11].  

Polymeric microparticles can act as transport media for active substances and offer advantages including 
improved physical, chemical, and biological stabilities, simple and reproducible preparation, and applicability to a 
wide range of agrochemicals [12-15]. Also, microparticles may increase the efficacy of the agrochemicals, offering 
better results with lower doses and number of applications, as well as they may decrease the risk of environmental 
contamination and the toxicity to humans and other non-target organisms [16]. 

Considerable research effort in the last decade has gone into studying polyhydroxyalkanoates (PHAs) – 
polyesters of alkanoic acids, produced by microorganisms, which, as well as polycaprolactone, polylactides, and 
polyglycolides, are used to construct systems enabling controlled release of the active ingredient. PHAs can be 
degraded into end products (aerobically to CO2 and H2O) in different biological media, and this is one of their most 
valuable properties [17].   

Research on embedding agrochemicals in PHA-based microparticles is still in its infancy. Some authors 
reported encapsulation of the herbicides atrazine and ametrine in microspheres prepared from P3HB/3HV [12, 18] 
and encapsulation of the pesticide malathion in microspheres prepared from poly-3-hydroxybutyrate blended with 
polycaprolactone [19]. A search of the available literature did not reveal any studies reporting the use of PHAs to 
construct slow-release fungicide formulations. The previous studies by our team described experimental 
tebuconazole formulations shaped as smooth films and 3D constructs and reported TEB release kinetics [20-21]. 
Experiments with two cultures, F. moniliforme and F. solani, proved that the experimental formulations of 
tebuconazole embedded in the P3HB matrix showed antifungal activity.  

The purpose of this study was to construct and investigate polymeric microparticles based on poly-3-
hydroxybutyrate containing a fungicide – tebuconazole.  

2. Materials and Methods 
2.1. Materials   



Polymer of β-hydroxybutyric acid (poly-3-hydroxybutyrate, P3HB) was used as a polymeric carrier for the 
fungicide. The polymer was synthesized at the Institute of Biophysics SB RAS using the technology developed by 
Volova et al. [22]. Systemic fungicide Raxil Ultra (Bayer CropScience, Russia) and its active ingredient – 
chemically pure Tebuconazole (97%, TEB) (Nanjing Zhongli New Material Technology Co., Ltd, China) – were 
used in this study (Fig. 1). TEB has a broad spectrum of activity. It provides effective protection against various 
diseases in cereals and helianthus. This fungicide disinfects seeds and partially decontaminates soil and plant 
residues around the seeds. The time of degradation in soil is 177 days.  

2.2. Preparation of controlled release formulation 
Microparticles were constructed using the emulsion technique. First, a polymer/TEB suspension was 

prepared by dissolving 200 mg P3HB and 20, 50, and 100 mg TEB (to achieve 10, 25, and 50% loading, 
respectively) in 10 ml organic solvent – dichloromethane. Then a double oil/water (O/W) emulsion was prepared by 
gradually pouring the solution into 100 ml of a 1% polyvinyl alcohol solution (Mw 30-50 kDa, Sigma-Aldrich, 
U.S.). After that, the emulsion was agitated at 750 rpm for 24 h using an MR Hei-Standard magnetic stirrer 
(Heidolph, Germany) to prepare micro-sized particles. Microparticles were collected by centrifuging using 
Centrifuge 5810 R, 5417 R (Eppendorf, Germany) (at 10 000 rpm, for 7 min), rinsed in distilled water, and freeze 
dried (Alpha 1-2 LD plus, Christ®, Germany). 

2.3. Analysis of P3HB/TEB microparticles   
The size of the microparticles was determined using a system for quantitative and qualitative particle 

analysis – FlowCam (FluidImaging, U.S.); a Zetasizer Nano ZS (Malvern, U.K.) particle analyzer was used to 
determine zeta potential based on electrophoretic activity of microparticles.  

Surface morphology of microparticles was examined using scanning electron microscopy with an S-5500 
microscope (Hitachi, Japan) in the Joint Instrument Use Center at the Krasnoyarsk Scientific Center Siberian Branch 
of Russian Academy of Sciences. The samples were sputter-coated with platinum using a sputter coater K550X 
(Emitech, Quorum Technologies Ltd., U.K.). 

The yield (Y) of microparticles was calculated as percent of the mass of the polymer used to prepare them, 
with the following formula:  

Y = (Wm/Wp)*100 %, 
where Wm is the weight of the microparticles, mg, and Wp is the weight of the polymer used to prepare the 

microparticles, mg. 
The amount of the fungicide embedded in the microparticles was determined using chromatograph/mass 

spectrometer 7890/5975C (“Agilent Technology”, U.S.); calibration was performed with fungicide solutions of 
known concentrations. The encapsulation efficiency (EE) was calculated as percent of the fungicide amount 
embedded in the matrix using the following formula:  

EE = (Mw/Me)*100 %, 
where Mw is the initial weight of the fungicide and Me is the weight of the fungicide encapsulated in the 

polymeric matrix.  
 
2.4. In vitro TEB release studies 
Kinetics of TEB release from the polymeric microparticles was studied in vitro in laboratory water systems 

as described elsewhere [23]. Samples of microparticles were sterilized and placed into 500-ml sterile conical flasks 
filled with sterile distilled water (100 ml). The flasks were incubated at 25°C in an Innova 44 New Brunswick 
temperature controlled incubator shaker at 150 rpm. Samples for analysis were collected periodically, under aseptic 
conditions, and an aliquot of water was added to the flask to maintain a constant volume of liquid in it. TEB was 
extracted with chloroform three times to determine its concentration. The chloroform extracts were passed through 
sodium sulfate. Chloroform was removed in a rotary vacuum evaporator. The amount of TEB released (ATEB) was 
determined as percentage of the tebuconazole encapsulated in the polymer matrix, using the following formula:  

ATEB = (RA/EA) × 100 %, 
where EA is the encapsulated amount, mg, and RA is the amount released, mg.  
The data obtained from in vitro experiments were fitted to various mathematical models to assess the TEB 

release kinetics [24]. 
Zero-order kinetic model 

   ,                                            (1) 
where Qt is amount of the fungicide dissolved in time t, Q0 is initial amount of the fungicide in the solution, and K0 
is zero-order release constant. 

First-order kinetic model 

     ,                                      (2) 
where Qt is amount of the fungicide dissolved in time t, Q0 is initial amount of the fungicide in the solution, and K1 
is first-order release constant. 

Higuchi model 
The model relates cumulative release of the fungicide versus square root of time as shown in Eq. (3). 

                                                   (3) 



Hixson–Crowell model 
This model relates cube root of the percentage of the fungicide remaining in microparticles versus time. As 

given by Eq. (4). 

                                            (4) 
Korsmeyer–Peppas model 
This model relates exponentially the fungicide release to the elapsed time. The equation is given as Eq. (5).  

                                                     (5)  

2.5 Antifungal activity of P3HB/TEB microparticles   
The antifungal activity of P3HB microparticles containing TEB was investigated in experiments with 

phytopathogenic fungi of the genus Fusarium (F. moniliforme and F. solani), which were extracted from the field 
soil and grown on the malt extract agar (MEA, Sigma-Aldrich, U.S.) in Petri dishes at a temperature of 25°C for 5-7 
days.  Then, 5-mm diameter slabs of agar were aseptically drilled from the culture regions with actively growing 
colonies. A slab with the fungal culture and P3HB/TEB microparticles were placed at opposite sides of the Petri 
dish containing sterile MEA. The dishes were incubated in a thermostat at 25°C for 72 h; then, we measured the 
radius of the fungal mycelium and determined the degree of fungus growth inhibition relative to the control. As a 
positive control (Control+), we used the commercial TEB formulation (Raxil Ultra) at the same concentration; as a 
negative control, fungi were grown without TEB.  

2.6 Statistical analysis  
Statistical analysis of results was performed using the standard software package of Microsoft Excel, 

STATISTICA 8. Arithmetic means and standard deviations were determined using Student’s t test. Results are given 
as X±m. 

 
3. Results 
3.1. Characterization of the microparticles  
Using the technique of solvent evaporation from emulsion, we produced microparticles with initial TEB 

loading of 10, 25, and 50% of the polymer weight.  
To prepare TEB-loaded microparticles, we dissolved the fungicide and the polymer in dichloromethane. 

Although TEB solubility in dichloromethane is higher than 200 g/L (at 20°C) and its molecular weight is low – 
307.8 g/mol., analysis showed formation of large undissolved TEB crystals on the surface of microparticles (Fig. 2). 
The most likely explanation for this is that TEB concentration was high and it did not dissolve completely because 
of the presence of the high-molecular-weight polymer chains of P3HB in the solution. As the TEB loading was 
increased from 10 to 50%, the amount of TEB crystals on the surface of microparticles increased too.  

Moreover, as the TEB loading was increased, the average diameter of microparticles became larger, 
changing from 41.3 to 71.7 µm (Table 1). Most of the researchers constructing TEB carriers now aim to produce 
nano-sized formulations, which would be able to penetrate into plant tissues [25-26]. In the present study, we 
propose using micro-sized TEB formulations both for preventative application and for treating spore-infected seeds 
by applying the fertilizer to the soil where seeds are sown. Therefore, we prepared large microparticles, whose 
average diameter was more than 40 µm.  

Zeta potential of the microparticles was not influenced by TEB loading, varying between -32.6 and -35.7 
mV (Table 1). As tebuconazole loading was increased, the yield of the microparticles with respect to the initial mass 
of the polymer decreased.  

The presence of large TEB crystals on the surface of microparticles also increased encapsulation efficiency 
to 86% at 50% loading due to surface adsorption of TEB (Table 1).  

Analysis of the relevant literature shows that the highest TEB EE (up to 93%) was achieved in a study by 
Ding et al. [25]. The authors encapsulated TEB into self-assembled amphiphilic nanoparticles based on chitosan 
with branched acrylic monomers (polymethyl methacrylate and hydroxymethyl methacrylate). On the other hand, 
the values of EE achieved in the present study are considerably higher than the TEB EE in porous silicon 
nanoparticles, which was no greater than 45% [26]. Thus, polymeric carriers for TEB have better potential than 
inorganic ones, which is proved by their significantly higher EE.    

3.2. TEB release kinetics in vitro 
TEB release in vitro was studied in distilled water used as model medium. Figure 3 shows profiles of TEB 

release from P3HB microparticles over two months.  
We expected the greatest TEB release from the microparticles loaded at 50% of the polymer weight, as the 

large TEB particles present on their surface (Fig. 2) were supposed to dissolve after coming in contact with the 
medium, due to physical adsorption. However, the fungicide release curves obtained for the 50% and 25% loaded 
microparticles were similar to each other. A possible reason for this may be poor water solubility of TEB. In 
accordance with the theory of solubility, the chemical potentials of the solvent and solute gradually change during 
dissolution. Dissolution stops at a concentration at which the chemical potential of the solute in the solution is equal 
to the chemical potential of the dissolved substance in its pure phase. As tebuconazole is poorly dissolved in water 
(<0.032 g/L), when it reached its highest possible concentration in the model medium, the rate of TEB release from 
the 25% and 50% loaded microparticles slowed down.  



This assumption was confirmed by results shown in Figure 3: photographs of microparticles after 
incubation in water. Microparticles with the highest TEB loading still had fungicide crystals on their surface, which 
suggested that TEB was only partly released and, hence, prolonged release of the fungicide was achieved.  

After 60 days, 42.7±2.7% and 38.3± 3.7% TEB was released from the particles initially loaded at 25% and 
50%, respectively. The amount of the fungicide released from the 10%-loaded microparticles was the lowest – 25%. 
The most likely causes for the slow rates of TEB release from P3HB microparticles are poor water solubility of TEB 
and the slow degradation rate of the polymer.  

After the microparticles were incubated in water, their size distribution changed, too, and the fraction of 
microparticles of sizes between 100 and 150 µm became larger (Fig. 4). The average diameters of the microparticles 
with the initial TEB loading of 10, 25, and 50% increased to 94, 104, and 112 µm, respectively, as the particles 
formed aggregates during incubation in water.   

The data obtained from in vitro TEB release were fitted to different mathematical models, namely, Zero-
order, First-order, Higuchi, Hixson–Crowell, and Korsmeyer–Pappas models, to predict the kinetics and fungicide 
release mechanism.  

The release constant and regression coefficient (R2) values obtained from the mathematical models are 
shown in Table 2 and Fig. 5.  

Release kinetics of TEB from the microparticles with the lowest loading could be described using the 
Hixson–Crowell model with the coefficient R2 of 0.980. The data obtained for the microparticles containing 25% 
and 50% TEB best fitted the Zero-order and Higuchi models as indicated by the correlation coefficient, i.e. 0.940, 
0.989 and 0.978, 0.991, respectively, indicating that TEB release from the formulation followed Fickian diffusion. 
Also, the value of release exponent “n” obtained by applying the Korsmeyer–Pappas equation for all formulations 
was below 0.5, indicating TEB release from these formulations through Fickian diffusion. Thus, the release profiles 
could be best explained by the Hixson–Crowell, Zero-order, and Higuchi models. 

These results suggest that fungicide release can be prolonged by varying the amount of TEB in 
microparticles. 

3.3. Antifungal  activity 
Antifungal activity of P3HB microparticles loaded with the fungicide TEB was studied in experiments with 

phytopathogenic fungi F. moniliforme and F. solani. The reason for choosing these species was that tebuconazole 
most effectively inhibits biosynthesis of ergosterol in cell membranes of these phytopathogenic fungi. Photographs 
of phytopathogenic fungi of the genus Fusarium – F. moniliforme and F. solani – grown on solid medium in the 
presence of TEB-loaded microparticles can be seen in Figure 6.  

The areas of the F. moniliforme and F. solani mycelial colonies in the negative control (Control-) reached 
53.5 and 60.2 cm2, respectively, over 10 days. In the positive control (Control+), the areas of the F. moniliforme and 
F. solani colonies decreased to 24.5 and 27.4 cm2, respectively (Fig. 7). The smallest areas of the colonies were 
observed for the fungi grown in the presence of P3HB/TEB microparticles. The areas of the F. moniliforme mycelial 
colonies established in the presence of microparticles loaded with 25% and 50% TEB were 18.2 and 17.7 cm2, and 
the areas of the F. solani mycelial colonies were 21.3 and 18.6 cm2, respectively (Fig. 7).  

Thus, TEB effectively diffused from polymeric microparticles to the nutrient medium, significantly 
decreasing the areas of Fusarium colonies relative to the negative control.  

A search of the literature revealed few studies describing development of slow-release tebuconazole 
formulations and evaluating their efficacy. Asrar et al. [27] described microparticles prepared from poly(methyl 
methacrylate) and poly(styrene-co-maleic anhydride) emulsions and loaded with TEB. The encapsulated fungicide 
was applied to soil and effectively controlled wheat rust Puccinia recondita. Another study described cyanobacteria 
cells serving as a natural environmentally friendly wall material to encapsulate TEB with urea–formaldehyde resins 
automatically coated on it via electrostatic interactions. A bioactivity experiment showed that encapsulated TEB 
authentically prolonged the antifungal effects and was very efficacious in controlling wheat powdery mildew 
compared with the commercial formulation [28]. Our team previously studied antifungal activity of TEB embedded 
in films and pellets towards F. moniliforme and F. solani. The inhibitory effect was stronger when films were used. 
The inhibitory effect of TEB-loaded pellets was comparable to that of the TEB commercial formulation (positive 
control). 

Results obtained in the present study suggest effective antifungal activity of TEB encapsulated in 
polymeric microparticles towards F. moniliforme and F. solani.   

 
Conclusion 
TEB-loaded P3HB-based microparticles were developed and comprehensively characterized in this study. 

TEB-loaded microparticles were prepared using double emulsification technique. Tebuconazole encapsulation 
efficiency depended on the TEB to polymer matrix mass ratio, reaching 59, 65, and 86% in the microparticles 
initially loaded with 10, 25, and 50% TEB, respectively. As the loading amount was increased, the average diameter 
of microparticles increased too, from 41.3 to 71.7 µm, while zeta potential was not influenced by TEB loading, 
varying between -32.6 and -35.7 mV. TEB release from microparticles was studied in a laboratory aqueous 
environment. TEB was released gradually from 10, 25, and 50% loaded particles, and over 60 days, 25, 43, and 
38%, respectively, of the initially loaded amount was released. The antifungal activity of the P3HB/TEB 
microparticles against phytopathogenic fungi F. moniliforme and F. solani was comparable to that of the free 



fungicide. Thus, hydrophobic agrochemicals (TEB) can be effectively encapsulated into P3HB microparticles to 
construct slow-release formulations.  
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Figure caption 
Figure 1. Structural formulas of poly-3-hydroxybutyrate (a) and tebuconazole (b) 
Figure 2. SEM images of P3HB/TEB microparticles with different TEB loading (10, 25, and 50% of the 

polymer weight) and their size distribution: 1, 2, and 3, respectively. Bars 500, 40, and 2 µm 
Figure 3. TEB release kinetics from P3HB microparticles loaded with 10, 25, and 50% TEB (relative to the 

polymer weight) for 60 days of incubation in distilled water. Bars 500, 40, and 2 µm   
Figure 4. SEM images of P3HB/TEB microparticles with different TEB loading – 10, 25, and 50% of the 

polymer weight: 1, 2, and 3, respectively, after 60 days of incubation in distilled water. Bars 500, 40, and 2 µm  
Figure 5. Mechanism of TEB release: by Zero-order model; by First-order model; by Higuchi model; by 

Hixson-Crowell model 
Figure 6 – Sensitivity of Fusarium species to TEB: 1) P3HB microparticles loading 25 % TEB; 2) P3HB 

microparticles loading 50 % TEB; 3) positive control (Control+) – free fungicide; 4) negative control (Control-) 
without TEB 

Figure 7 – The petri images of changes in the area of the Fusarium mycelial colonies affected by free TEB 
(Control+) and TEB encapsulated in P3HB microparticles containing 25 mg TEB and 50 mg TEB. Control-  is 
negative control, without TEB  
 
 


