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Abstract. In this paper, we investigate the problem of separation of a mixed production batch 

of semiconductor devices for the space industry into homogeneous production batches. The 

method of factor analysis is applied to reduce the dimensionality of the problem. We 

investigate the impact of measured parameters of semiconductor devices in the accuracy of the 

separation of the mixed lot, composed several homogeneous batches. It was shown, that with 

any orthogonal rotations of factor structure as the number of homogeneous batches in the 

sample increases, the clustering accuracy reduces. Groups of semiconductor device parameters 

which have the greatest impact on the partition accuracy regardless of the number of 

homogeneous batches in the sample detected. 

1.  Introduction 

In order to install space equipment with highly reliable electronic components, specialized testing 

centers conduct a variety of tests of each installed device. Electronic component base (ECB) designed 

for installation in spacecraft equipment, along with the classical input control is subjected to additional 

rejection tests, including a selective destructive physical analysis (DPA).  

The DPA allows us to confirm the good quality of the batches of ECB or to identify the batches, 

which have defects due to manufacturing technology not detected during conventional rejection tests 

and additional non-destructive testing. In order to be able to transfer the results of the DPA of several 

devices for the entire batch of semiconductor devices, the following requirement is put forward for the 

ECB intended for installation in space equipment: all devices from the same batch must be made from 

the same raw materials. Manufacturers for general consumption equipment (not designed solely for 

use in a spacecraft) cannot guarantee the implementation of this requirement. Therefore, the problem 

of automatic grouping of semiconductor devices by production batches is relevant.  

In paper [1] it is shown, that the problem of allocation of homogeneous batches can be further 

reduced to the problem of cluster analysis. Each group (cluster) must represent a homogeneous batch 

made from one type of raw materials. To solve the problem of identifying homogeneous batches, in 

papers [2,3,4], the application of the k-means clustering algorithm was proposed. In [5], the authors 

consider the fuzzy clustering method based on the EM algorithm. In [6], the problems of using 

ensembles of clustering algorithms are considered (k-means, k-medoids, k-medians, ЕМ, as well as 
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their optimized versions). In [1], the authors consider the application of genetic algorithms with greedy 

heuristics, as well as modifications of the EM algorithm for the separation of homogeneous batches of 

electronic devices.  

In this paper, we consider the problem of reducing the dimensionality of the original data for the 

corresponding problems of cluster analysis. 

2.  Source data 

In this paper, we consider a sample consisting of seven different homogeneous batches. The sample is 

deliberately composed of batches, some of which are extremely difficult to separate by known 

methods of cluster analysis. 

The total number of devices is 3987: batch 1 contains 71 devices, batch 2: 116, batch 3: 1867, batch 

4: 1250, batch 5: 146, batch 6: 113, batch 7: 424. Each batch contains information about 205 measured 

input parameters of the device. Input parameters for which the data vector contains only zero values or 

for which the number of non-zero values does not exceed 10% were excluded from consideration. For 

further processing, 67 input parameters remain to be considered. 

An analysis of the hit frequency histograms of parameters shows that the nature of the parameter 

distributions in different batches is identical, mean standard deviations are commensurable. We 

combined parameters with identical distributions into several groups and marked them as follows: 

parameters In10-In20 as group 1, parameters In21-In28 as group 2, parameters In39-In46 as group 3, 

parameters In57-In82 as group 4, parameters 84-91 as group 5, parameters In92-In107 as group 6. All 

measurements (parameters, dimensions) of nondestructive tests can be divided into three groups: 

A. parameters for which the histograms are represented by a Gaussian distribution: group 2 and 

group 3 (figure 1(a));  

B. parameters for which the histograms are represented by a Gaussian distribution with frequency 

gaps: group 5 (figure 1(b));  

C. parameters for which the histogram does not correspond to Gaussian distributions: group 1, group 

4, group 6 (figure 1(c)). 

 

Figure 1. Histogram of observed frequencies and graphs of the distributions: a) Gaussian 

distribution (parameter In21); b) Gaussian distribution with frequency gaps (parameter In90); c) 

non-Gaussian distribution (parameter In64). 

Apparently from table 1, the kurtosis criterion [7] allows us to separate group C parameters from 

the others. For such parameters, the values of this criterion are high (more than 10). For a normally 

distributed random variable, this criterion has zero expectation. 

Table 1. Kurtosis criterion for parameter groups (average value). 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

30,3174 -0,7848 -0,6161 11,3501 1,1031 22,0853 
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3.  Factor analysis 

Factor analysis is based on the definition of the factor model (1). 

𝑋𝑖 =∑𝑎𝑖𝑗𝐹𝑗 + 𝑢𝑖

𝑚

𝑗=1

 

(1) 

where Xi is vector of values of measured parameter (i=1..n), Fj - primary factors (j=1..m), aij are 

coefficients named factor loadings, ui are characteristic (specific) factors describing the part of the 

parameter not included in any primary factor. When m<n the reduction of the dimensionality of the 

original problem taking place.  

Assuming the orthogonality of the factors, we obtain  

𝑅 = 𝐴 ∙ 𝐴T 
(2) 

where R is a correlation matrix, А is the factor loadings matrix. 

In [8] was shown, that reducing the dimension of the data vectors can be achieved by applying 

factor analysis without reducing the accuracy of the clustering, and, in some cases, with increasing 

accuracy. 

To extract factors we used the principal components method, principal factor with multiple R-

square method, principal axes method, maximum likelihood factors method, iterated communalities 

method (MINRES) and centroid method [9]. In table 2 values of total variance given by all extracted 

factors are presented. The eigenvalues of the factors obtained using these methods for full mixed lot 

are given in table 3.  

In further consideration we used principal components method since it describes the maximum 

variance of input parameters. Various rotations of the factor structure were considered: varimax, 

quartimax and unrotated structure.  

Table 2. Total variance given by all extracted factors (%). 

  Principal 

components 

Multiple  

R-square 

Principal 

axes 

Maximum 

likelihood 

Minres Centroid 

Full mixed lot 76.593 71.593 72.132 71.998 72.176 72.012 

Four batches 66.131 61.204 61.024 60.304 61.025 63.332 

Three butches 79.916 73.196 73.247 73.230 73.256 30.276 

Two butches 76.031 70.221 70.104 69.719 70.111 70.841 

Table 3. Eigenvalues for full mixed lot. 

Factors 
Principal 

components 

Multiple 

R-square 

Principal 

axes 

Maximum 

likelihood 
Minres Centroid 

1 14.00009 13.79306 13.80443 13.62651 13.80426 11.99882 

2 12.44429 12.15745 12.18109 10.73055 12.18097 11.00877 

3 8.68898 8.44518 8.47136 9.80307 8.47160 8.23812 

4 5.37063 5.02919 5.07701 4.47814 5.07841 5.18165 

5 4.06157 3.85231 3.87730 4.45746 3.87763 5.60322 

6 3.50069 3.08871 3.12985 3.34283 3.12996 3.30473 

7 2.04150 1.58570 1.67960 1.75964 1.68737 2.84382 

8 1.01583 0.56490 0.60103 0.59965 0.60144 0.50902 

9 0.95981 0.16670 0.22819 0.16071 0.24781 0.28027 

4.  Computational experiments 

Before conducting experiments with clustering, the following hypotheses were put forward: 
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1) the use of factor analysis using input parameters with normal Gaussian distribution and normal 

Gaussian distribution with frequency gaps improve the accuracy of clustering of a mixed batch 

consisting of homogeneous batches; 

2) input parameters that do not correspond to the Gaussian distribution, do not have a significant 

impact on the clustering accuracy of the mixed lot. 

Various variants of the mixed lot consisting of 2, 3, 4 and 7 homogeneous batches were considered 

to confirm the hypotheses. Different groups of parameters were consistently excluded from the initial 

set of input parameters. 

Clustering was performed by EM algorithm and by self-oranized Kohonen maps (SOM) with 

Deductor Studio Academic tool. EM algorithm [10] applied with lower bound of likelihood = 0,2, 

level of accuracy =10-5, maximum of iterations=100. Self-organizing Kohonen maps (SOM) [11] 

applied with linear initialization with eigenvalues, bubble neighborhood function, significance level 

=0,1%. The clustering accuracy for considered mixed lots with different orthogonal rotations is 

presented in table 4. Clustering accuracy is calculated as a total percentage of exact hits of the 

algorithm among all clusters. In some cases (as a rule, for 2 and 3 batches) the separating could not be 

carried out because only one cluster was found.  

Table 4. Clustering accuracy, % 

Number of 

homogeneous butches 

in the mixed lot 

EM EM EM SOM SOM SOM 

unrotated varimax quartimax unrotated varimax quartimax 

 Full mixed lot  

7 43 43 45 14 15 34 

4 97 97 97 79 92 67 

3 97 91 93 83 68 82 

2 98 94 100 98 83 100 

 Without group of parameters In10-In20 (group 1) 

7 36 41 38 - 14 14 

4 97 76 76 74 91 72 

3 97 93 93 85 71 70 

2 98 80 100 98 83 81 

 Without group of parameters In57- In82 (group 4)  

7 41 24 26 - 17 14 

4 69 74 76 - 88 88 

3 - - - - - - 

2 - - - - - - 

 Without group of parameters In84- In91 (group 5) 

7 33 33 38 - 14 14 

4 81 79 80 67 63 82 

3 66 89 64 60 77 75 

2 98 80 100 98 80 97 

 Without group of parameters In92- In107 (group 6) 

7 45 40 38 14 27 22 

4 98 42 72 77 91 61 

3 100 100 100 78 78 89 

2 - - - - - - 

 With normal distribution only (without groups 1,4,6) 

7 43 35 38 7 7 7 

4 98 69 69 98 99 92 

3 100 100 100 74 67 74 

2 - - - - - - 
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In addition, the variants of excluding each homogeneous batch from the full mixed lot are 

considered with all input parameters (figure 2). The factors obtained by variants of orthogonal 

rotations with cumulative variance 60% and 70% were used as input data. Clustering was performed 

by EM algorithm. 

Thus, EМ algorithm worked better than the SOM. For the SOM algorithm clustering performed 

with higher accuracy for varimax rotation, while for ЕМ algorithm varimax has lower accuracy, and 

higher accuracy was achieved by unrotated factor structure.  

Clustering accuracy increased when number of batches in the mixed lot reduced. Parameters 

exclusion had the least impact on clustering accuracy in case of 2 and 3 batches. For 4 and 7 batches 

parameters exclusion led to reducing clustering accuracy. 

 

 

 

 

 

 

Figure 2. Clustering 

accuracy with 

excluding batches 1-7 

and full mixed lot 

respectively, variants 

of rotations with 60% 

and 70% of total 

variance, %. 

 

5.  Conclusion 

The strongest impact on the clustering results was the exclusion of a group of parameters with a 

normal distribution with frequency gaps from the factor model, the accuracy decrease was 9.9% in 

average. The least impact was the exclusion of a group of parameters, which do not correspond to 

Gaussian distribution, the accuracy decreased in average for 3.3%. Exclusion of homogeneous batches 

from a mixed lot led to frequency gaps in frequency histograms, as a result clustering accuracy 

reducing.  

Thus, it was shown experimentally that the use of factor analysis using the input parameters with 

Gaussian distribution and Gaussian distribution with frequency gaps does not increase the accuracy of 

the clustering of the mixed lot consisting of homogeneous batches. However, the clustering accuracy 

decreases slightly. 
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