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Abstract

The beginning of civilization was a turning point in human evolution. With increasing separation from the natural
environment, mankind stimulated new adaptive reactions in response to new environmental factors. In this paper, we
describe direct signs of these reactions in the European population during the past 6,000 years. By comparing whole-

25 genome data between Late Neolithic/Bronze Age individuals and modern Europeans, we revealed biological pathways
that are significantly differently enriched in nonsynonymous single nucleotide polymorphisms in these two groups and
which therefore could be shaped by cultural practices during the past six millennia. They include metabolic trans-
formations, immune response, signal transduction, physical activity, sensory perception, reproduction, and cognitive
functions. We demonstrated that these processes were influenced by different types of natural selection. We believe that

30 our study opens new perspectives for more detailed investigations about when and how civilization has been modifying
human genomes.
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Introduction
It is generally accepted that the term “civilization” refers to

35 any complex society characterized by urban development,
social stratification, symbolic communication forms (typically
represented by writing systems), and a perceived separation
from and domination over the natural environment (Adams
1966). From an evolutionary point of view, civilization started

40 when humans, instead of reacting to the environment, began
to actively shape it. Since the Neolithic transition, mankind
has experienced a shift to agriculture, domestication of ani-
mals and plants, sedentism, significant increase in population
density, and exposure to new pathogens; most of these effects

45 have been self-imposed. Humans have been creating the ar-
tificial environment separating them from nature. This new
environment induces new responses to it.

At present, it is supposed that culturally derived selection
pressures should be stronger than noncultural ones (Feldman

50 and Laland 1996; Ehrlich 2000; Bersaglieri et al. 2004; Richerson
and Boyd 2005; Laland 2008; Laland et al. 2010). The main
reason for this is that using cultural practices led to drastic
population growth. As a result, the number of targets for

mutations (both advantageous and disadvantageous) in the
55population increased, as did the number of individuals for

selection (Laland 2008). Paradoxically, mutations accumulated
in human genomes as a result of relaxed natural selection can
also serve as targets for selection in new environmental con-
ditions. Moreover, new cultural practices typically spread

60more quickly than genetic mutations, and the more individ-
uals exhibiting the cultural trait, the greater the intensity of
selection (Kimura 1955; Boyd and Richerson 1985; Hawks et al.
2007; Laland 2008; Cochran and Harpending 2009).

Culturally derived selection leaves signs in the human ge-
65nome. Some of these signs (like lactase persistence) are quite

evident (Holden and Mace 1997; Beja-Pereira et al. 2003;
Gamba et al. 2014; Allentoft et al. 2015), whereas many others
are still uncertain (Libert et al. 1998; Stephens et al. 1998;
Galvani and Slatkin 2003; Sabeti et al. 2005). Revealing and

70analyzing these selection signatures is of high importance not
only for improving our understanding of connections be-
tween the human organism and the environment but also
for deepening our insight into mechanisms of emergence of
the so-called “diseases of civilization.”
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The earliest stages of human civilization are the Late
Neolithic Age and the Bronze Age. These were the epochs
that gave rise to our present lifestyle. The 6,000 years between
that period and modern times encompass the greater part of

5 human civilization events. In this paper, we study the genetic
consequences of these cultural events.

Many different approaches are used to reveal and analyze
possible selection signals (Voight et al. 2006; Sabeti et al. 2007;
Tang et al. 2007; Williamson et al. 2007; Quach et al. 2009;

10 Grossman et al. 2013; Mathieson et al. 2015; Field et al. 2016).
Most are based on modern human genome-wide data and,
therefore, represent indirect evidence of selection. Objective
information can be obtained by direct comparison of ancient
and modern human genomes. The first steps in this direction

15 were made relatively recently; they became possible thanks to
whole-genome next generation sequencing of ancient sam-
ples. These studies have revealed selection signatures in single
nucleotide polymorphisms (SNPs) associated with skin pig-
mentation, diet, and immunity, as well as with some complex

20 traits, that is, human height (Olalde et al. 2014; Allentoft et al.
2015; Mathieson et al. 2015; Dannemann et al. 2016; Fu et al.
2016).

Providing that natural selection should act through phe-
notypes, we assume that selection signals for multigenic traits

25 should be analyzed not only at the level of individual SNPs but
also at the level of biological pathways, where the influence of
individual SNPs is aggregated into functional groups. This
approach has been previously used, for instance, to study
selection signatures between human and chimpanzee line-

30 ages (Somel et al. 2013). In the present study, we applied
pathway analysis to low-covered whole-genome ancient
DNA sequence data. We compared data on European Late
Neolithic/Bronze Age individuals (Gamba et al. 2014;
Allentoft et al. 2015; Haak et al. 2015; Mathieson et al.

35 2015) with those from modern European individuals
(http://www.internationalgenome.org/) supposedly of
Bronze Age ancestry and occupying the same geographical
area as their ancestors. Our aims were 1) to reveal nonsynon-
ymous SNPs in ancient and modern groups, 2) to associate

40 these SNPs with biological pathways, and 3) to calculate the
differences in pathway enrichment between the ancient and
modern groups. The revealed differences indicate the pro-
cesses that we suppose have been shaped by introduction
of human cultural practices during the past 6,000 years.

45 Results

Compatibility of the Data
We compared whole-genome data from 150 ancient samples
(supplementary tables 1 and 2, Supplementary Material on-
line) dated between 3,500 and 1,000 BCE (Gamba et al. 2014;

50 Allentoft et al. 2015; Haak et al. 2015; Mathieson et al. 2015)
(fig. 1) with data on 305 modern Europeans genotyped in the
framework of the 1000 Genomes Project (Gibbs et al. 2015).
We analyzed 40,573 synonymous and 48,860 nonsynony-
mous SNPs from the Bronze Age group versus 72,558 synon-

55 ymous and 96,710 nonsynonymous SNPs from the modern
group using the pipeline shown in figure 2.

To test whether there is any genetic continuity between
the Bronze Age group and the modern group, we applied two
different approaches. First, principal components analysis

60(PCA) demonstrated that the ancient and modern
European individuals are colocated within the same cluster
and are separated from modern individuals from other geo-
graphic regions (Africa, America, and Asia) (fig. 3).

Second, to test whether the analyzed modern individuals
65possess genetic ancestry of the Bronze Age individuals, we

measured the proportion of the Bronze Age individuals in
modern samples. Figure 4 shows that the linear composition
of Bronze Age ancestry in the modern individuals is relatively
high and varies from 20% to 90%.

70Therefore, we can confidently consider the analyzed mod-
ern Europeans to be genetic descendants of the Bronze Age
Europeans; this fact gives us the basis for studying microevo-
lution changes that occurred during the past six millennia in
Europe.

75Comparison of Ancient and Modern Data
Due to the low coverage of each position on the genome in
the ancient data, consideration of individual SNPs for direct
comparison of ancient and modern data does not produce
biologically or statistically significant results, since variant call

80at each ancient genomic position has limited fidelity.
Therefore, we considered one ancient merged genome and
one modern merged genome. The ancient merged genome
was assembled from compiling all SNPs of European Bronze
Age individuals, whereas the modern merged genome was

85assembled from all SNPs of modern European individuals.
Grouping of the SNPs into KEGG biochemical pathways
(see Materials and Methods) gave the additional robustness
to the calculations.

We assumed that during neutral evolution the same bio-
90logical pathways in the ancient and in the modern groups

should accumulate mutations at the same rate, whereas un-
der selection pressure the rate of accumulation of mutations
in the same pathways should be different. Therefore, we
calculated two types of enrichment scores for pathways:

951) differential synonymous SNP enrichment (DSSE) scores
between ancient and modern groups and 2) differential non-
synonymous SNP enrichment (DNSE) scores for these groups
(see Materials and Methods). The enrichment score for each
pathway was calculated as the deviation of the fraction of

100ancient SNPs in the given pathway from the expected fraction
of SNPs in the ancient merged genome. Therefore, when
there are more SNPs in the ancient merged genome, com-
pared with what is expected, the enrichment score is positive;
when there are less SNPs in the ancient merged genome,

105compared with what is expected, the enrichment score is
negative. Hence, a positive enrichment score indicates higher
pathway enrichment in the ancient group; a negative enrich-
ment score indicates higher pathway enrichment in the
modern group.

110Comparative analysis of DSSE scores revealed that none of
the pathways show significant differences in synonymous SNP
enrichment between the ancient and the modern groups
(supplementary table 3, Supplementary Material online).
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This corresponds to the hypothesis of neutral evolution for
this type of mutations. At the same time, comparison of
DNSE scores revealed 15 pathways that were differentially
enriched in nonsynonymous SNPs between the Bronze Age

5 and modern European individuals (fig. 5 and table 1; supple-
mentary tables 4 and 5, Supplementary Material online). We
also normalized nonsynonymous SNPs on synonymous SNPs.
The results (fig. 6) showed that all P-values of the synonymous
test, as well as most P-values of the nonsynonymous test are

10 inside the area of nonsignificant differences (shaded rectan-
gle). At the same time, P-values of the nonsynonymous test
for 15 differently enriched pathways are outside the area of
nonsignificant differences. This confirms the significance of
differences in these pathways between ancient and modern

15 Europeans.
The significance of the differences of enrichment scores

between the ancient and the modern groups was assessed
using the Bonferroni correction with P< 0.01 (table 1).
Benjamin et al. (2017) proposed to use the threshold of

20 P< 0.005 (see Materials and Methods). We suggest that,
among 15 revealed pathways, the 2 pathways that did
not pass this threshold (pentose and glucuronate intercon-
versions and PI3K-Akt signaling pathway) should be
interpreted with caution. We also excluded two of the

25 pathways: metabolic pathways since this grouping is too
general and ascorbate and aldarate metabolism since it is
very reduced in humans and its functions are not unique
(Ye and Doak 2009).

Therefore, we have identified the following pathways to be
30 significantly different between the Bronze Age and modern

groups: pentose and glucuronate interconversions, drug
metabolism by cytochrome P450, chemical carcinogenesis,
ABC transporters, antigen processing and presentation,
graft-versus-host disease, autoimmune thyroid disease,

35 hypertrophic cardiomyopathy, olfactory transduction,

oocyte meiosis, long-term potentiation, and dopaminergic
synapse.

We also compared the distribution of regulatory SNPs
between Bronze Age and modern individuals (see Materials

40and Methods). A proportion test revealed no difference in
enrichment of the KEGG pathways between the ancient and
the modern groups. This result was expected since the func-
tions of most of the revealed SNPs in the regulatory regions
are not yet known. Nonfunctional SNPs contribute to noise

45interfering the detection of functional SNPs (the same situa-
tion could happen if we analyzed synonymous and nonsy-
nonymous SNPs together).

Verification of the Results
As an alternative hypothesis, we considered the possibility

50that the obtained results can be explained by insufficient
sequence coverage of pathways in Bronze Age individuals.
To test this hypothesis, we performed the following compu-
tations. First, we calculated the Spearman correlation coeffi-
cient between enrichment score and fraction of covered

55length (supplementary fig. 1, Supplementary Material online).
The coefficient of determination was R2 ¼ 0.1. This implies
that a change in the coverage can explain only 10% of the
variability of pathway SNP enrichment and cannot be the
leading cause of the observed effect. Second, we analyzed

60the median coverage and median length of genes in the path-
ways (supplementary fig. 2, Supplementary Material online).
With the rare exception (three pathways), more than 50% of
individual genes were covered in the studied pathways. The
revealed enriched pathways were clustered together with

65unenriched pathways. Third, we calculated average coverage
per base pair per sample per pathway and total coverage per
base pair per pathway (supplementary fig. 3, Supplementary
Material online). In general, there is no relationship between
enrichment and coverage. The only exception is olfactory

FIG. 1. Location of ancient samples analyzed in the study. Data from Allentoft et al. (2015), Gamba et al. (2014), Haak et al. (2015), and Mathieson
et al. (2015) (for details, see supplementary tables 1 and 2, Supplementary Material online).
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transduction pathway (supplementary fig. 3A, Supplementary
Material online), whose average coverage per sample is a bit
lower in comparison to other pathways. However, the total
coverage for this pathway (supplementary fig. 3B,

5 Supplementary Material online), though a bit lower in com-
parison to most of other pathways, is not an outlier (there are
two other pathways with the same coverage which did not
show any difference in enrichment between ancient and
modern groups). For our calculations, we used data from

10total, not average, coverage. Therefore, there is no relationship
between enrichment and the gene’s size or coverage.

The observed trend might also be the result of general
interpopulation differences between the two groups. To
test this hypothesis, we calculated interpopulation differences

15between modern European groups using the same pathway
enrichment analysis (supplementary table 6, Supplementary
Material online). No difference in enrichment in any pathway
was revealed between present-day Europeans. Therefore, the

FIG. 2. Principal pipeline of the study. Analysis for nonsynonymous SNPs is presented. All calculations for synonymous SNPs were performed in the
same manner. Additional parameters and tool versions are listed in supplementary methods, Supplementary Material online.
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observed differences between the Bronze Age and modern
groups are the results of microevolution changes during the
past 6,000 years.

Discussion
5 Since the Late Neolithic, the European lifestyle has changed

drastically. The main factors determining the relationship be-
tween environment and the human body have undergone
significant alterations. For example, preagrarian and early
agrarian populations were exposed to environmental influen-

10 ces from a comparatively small geographical area (Gillings
et al. 2015). In contrast, modern Europeans exist in a global-
ized world where global travel (and corresponding environ-
mental exposures) as well as different new types of food,
clothes, and other consumables are common. Many new

15 factors have appeared, such as dietary changes, new patho-
gens, new medications, as well as high population density and
closer connections between distant groups of people. All of

these new conditions inevitably provoke responses from the
human body.

20In this paper, we studied how introduction of different
cultural practices during the past 6,000 years could shape
human genomes. We traced the microevolution of modern
Europeans back to their ancestors, carriers of the Late
Neolithic and Bronze Age cultures. We revealed 13 biological

25pathways that are significantly different between the Bronze
Age and modern groups. For most of them (except 3) the
number of nonsynonymous mutations is higher in the mod-
ern group than in the Bronze Age group, which means the
accumulation of mutations during the past 6,000 years. In the

30next paragraphs, we attempt to explain what civilization
events during the past millennia could have caused the
changes in these pathways.

We detected significant changes in a number of pathways
responsible for metabolism. One of them, pentose and glu-

35curonate interconversions, is associated with carbohydrate
metabolism. In the human organism, this pathway mainly
describes the transformation of UDP-glucose, a-D-glucose-1-
phosphate, and D-xylose (Du et al. 2016). We suggest that
changes in this pathway are the consequences of dramatic

40diet modifications arising with the introduction of agriculture,
an important event that stimulated the Neolithic transition
and progressed during the Bronze Age. One of three sub-
strates entering the pentose and glucuronate interconver-
sions pathway, UDP-glucose, comes from the galactose

45metabolism pathway (Du et al. 2016). The main source of
galactose in the modern human diet is lactose from milk.
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Humans are the only mammals who have the ability to utilize
lactose in adulthood. This ability is provided by a single mu-
tation in an enhancer region of the lactase gene (LCT) whose
product lactase, a participant in the galactose metabolism

5 pathway, breaks down lactose (Lewinsky et al. 2005;
Enattah et al. 2008). It is believed that in Europe the LCT
mutation arose in the Bronze Age or somewhat earlier as a
result of milking (Holden and Mace 1997; Gamba et al. 2014;
Allentoft et al. 2015). In modern Europe, the mutation fre-

10 quency is up to 100% (Gerbault et al. 2011) indicating strong
positive selection of this gene. Apparently, such a significant

change in the galactose metabolism pathway could strongly
affect the product (UDP-glucose) yield, which in turn could
modify the next pathway, pentose and glucuronate intercon-

15versions. Other substrates for the pentose and glucuronate
interconversions pathway are a-D-glucose-1-phosphate, the
product of glycolysis, and D-xylose, entering from the starch
and sucrose metabolism pathway (Du et al. 2016). Glucose
and starch dairy intake has changed dramatically during the

20past 6,000 years: As a result of agriculture, the ratio of
carbohydrate-rich food, especially grain-based products, has
increased significantly in the human diet (Cordain et al. 2005).
This ratio further increased after the Industrial transition in
the 18–19th century after which industrially processed flour

25and sugar became commonly available (Cordain et al. 2005;
Adler et al. 2013). Therefore, we suppose that changes in
nutrient consumption and thus in the metabolism of sub-
strates for the pentose and glucuronate interconversions
pathway have caused an accumulation of nonsynonymous

30mutations, which could modify this pathway.
Other metabolic pathways are associated with the trans-

formation of xenobiotics. They include drug metabolism by
cytochrome P450 and chemical carcinogenesis (two closely
related pathways, metabolism of xenobiotics by cytochrome

35P450 and drug metabolism by other enzymes, have passed
only the Benjamini–Hochberg correction and not the
Bonferroni one (supplementary tables 3 and 4,
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FIG. 6. Relationship between the P-values for synonymous and non-
synonymous SNPs in the studied pathways.
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Supplementary Material online). These pathways are closely
connected because they have partially overlapping mecha-
nisms (Lang and Pelkonen 1999; Oliveira et al. 2007) (indeed,
the chemical carcinogenesis pathway shares approximately

5 70% of genes with the cytochrome P450 metabolic pathway
[supplementary table 7, Supplementary Material online]).
During the past several millennia, substantial changes in hu-
man lifestyle were accompanied by the introduction of large
amounts of different xenobiotics (including new types of

10 food, alcoholic beverages, and microbial toxins). Some of
them (such as medications, plant fertilizers, and food addi-
tives) are supposed to improve the quality of human life.
Others (such as heavy metals and other pollutants) are side
effects of civilization activities. All of these substances can

15 shape human genomes by causing mutations (directly or in-
directly) or by inducing natural selection. Our results suggest
that new environmental factors in the form of xenobiotics
have induced genomic responses via increasing gene variabil-
ity and, as a result, modification of corresponding pathways.

20 Unfortunately, we can see not only this adaptation but also
an increase in the number of mutations in the chemical car-
cinogenesis pathway.

The ABC transporters pathway can be considered a part
of the human metabolic system. Human ABC transporter

25 genes encode transmembrane pumps that transport various
substrates (including amino acids, lipids, proteins, inorganic
ions, drugs, and other xenobiotics) against concentration gra-
dients (Stefkova et al. 2004; Pohl et al. 2005; Vasiliou et al.
2009; Moitra and Dean 2011). Therefore, changes in the

30 quantity or quality of these substrates through diet mod-
ifications or introduction of xenobiotics could also affect
genes encoding these transport proteins. Interestingly,

signals of positive selection were detected earlier in
some genes associated with transport of vitamins and

35cofactors (Voight et al. 2006; Tang et al. 2007). In aggre-
gate, these data suggest that changes in lifestyle have in-
duced genetic modifications in a system for transport of
nutrients and xenobiotics in the human body during the
past several millennia.

40Antigen processing and presentation is a very important
part of the adaptive immune system, which is evolutionarily
young and very reactive to environmental factors. It is the first
line of host immune defense that recognizes and initiates
immune responses to a broad range of alien agents. The

45major histocompatibility complex (MHC) plays the most im-
portant role in this process. Due to a very specific mechanism
of antigen interaction, MHC proteins are highly diverse, and
the genes encoding them (human leukocyte antigen genes,
HLA) are the fastest evolving genes in the human body (Blum

50et al. 2013; Forni et al. 2014). Unsurprisingly, the antigen
processing and presentation pathway has been shaped during
the past 6,000 years. The introduction of farming, which led to
exposure to a huge variety of new pathogens, as well as other
civilization factors such as urbanization (thus increasing pop-

55ulation density, insufficient sanitation, peridomestic animals,
etc.) and development of trading routes increasing the prob-
ability of disease spread, etc., has changed the pathogenic
environment drastically. Major pandemics, such as the plague
in Europe, could have also played a very important role in the

60selection of immune system genes (Barnes et al. 2011;
DeWitte 2014; Laayouni et al. 2014). It is quite possible that
modern medicine has also been modifying the genetic mech-
anism of immune response. This issue still needs extensive
research.

Table 1. Biological Pathways Differently Enriched in Ancient and Modern Groups.

Pathway ID Pathway Name Ancient
SNPs

Count

Modern
SNPs

Count

DNSE
Score

P-value P-value Adjusted
Bonferroni

Enriched
Bonferroni 0.01

Threshold

Enriched
Bonferroni 0.005

Threshold

hsa00040 Pentose and glucuronate
interconversions

26 117 24.29 1.75310205 5.05310203 Modern No

hsa00053 Ascorbate and aldarate
metabolism

20 99 24.20 2.69310205 7.77310203 Modern No

hsa00982 Drug metabolism—cytochrome
P450

84 259 24.38 1.20310205 3.48310203 Modern Modern

hsa01100 Metabolic pathways 2512 4982 24.69 2.76310206 7.98310204 Modern Modern
hsa02010 ABC transporters 209 533 24.44 8.93310206 2.58310203 Modern Modern
hsa04114 Oocyte meiosis 298 337 5.58 2.41310208 6.97310206 Ancient Ancient
hsa04151 PI3K-Akt signaling pathway 969 2019 24.18 2.94310205 8.50310203 Modern No
hsa04612 Antigen processing and

presentation
232 578 24.37 1.27310205 3.66310203 Modern Modern

hsa04720 Long-term potentiation 202 215 5.13 2.91310207 8.41310205 Ancient Ancient
hsa04728 Dopaminergic synapse 294 365 4.45 8.61310206 2.49310203 Ancient Ancient
hsa04740 Olfactory transduction 756 1817 27.09 1.35310212 3.89310210 Modern Modern
hsa05204 Chemical carcinogenesis 101 305 24.62 3.86310206 1.12310203 Modern Modern
hsa05320 Autoimmune thyroid disease 181 482 24.65 3.25310206 9.38310204 Modern Modern
hsa05332 Graft-versus-host disease 166 444 24.50 6.71310206 1.94310203 Modern Modern
hsa05410 Hypertrophic cardiomyopathy

(HCM)
347 843 24.95 7.48310207 2.16310204 Modern Modern

NOTE.—Differential SNP enrichment of KEGG pathways between ancient and modern individuals. Positive DNSE values correspond to pathways that have more SNPs in
genomes of ancient individuals, whereas negative DNSE values correspond to pathways that have more SNPs in genomes of modern Europeans.
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Graft-versus-host disease is considered by clinicians to be a
disorder but from the evolutionary point of view it represents
a powerful system of immune response to alien agents. This
alloimmunity is evolutionarily ancient and seems to be an

5 “unavoidable consequence” of a natural mechanism of anti-
gen processing and presentation (Lakkis and Lechler 2013).
Indeed, graft-versus-host disease shares 71% of common
genes with the antigen processing and presentation pathway
(most of them are HLA-genes) (supplementary table 7,

10 Supplementary Material online). Being an inseparable part
of the human defense system, alloimmunity should evolve
together with it. Therefore, we suppose that all the above-
mentioned factors that caused changes in the antigen proc-
essing and presentation process should act similarly on the

15 graft-versus-host disease pathway.
Another pathway connected with antigen processing and

presentation is connected to autoimmunity. We revealed se-
lection signals for autoimmune thyroid disease. It shares 37%
of genes (all of them belong to HLA group) with the antigen

20 processing and presentation pathway (supplementary table 7,
Supplementary Material online). Therefore, the emergence of
this autoimmune disease is probably a cost of the fast adapt-
ing antigen processing and presentation system; however, we
believe that there are additional environmental factors that

25 contributed to the intensive evolution of this particular dis-
order. Autoimmune thyroid disease is a syndrome character-
ized by chronic inflammation of the thyroid. It is believed to
be specific for Homo sapiens (Aliesky et al. 2013) but it is
unknown when this disease appeared in the human popula-

30 tion. Currently, autoimmune thyroiditis is quite common in
the European population (Vanderpump 2011). It can proba-
bly be connected with the increased carbohydrate uptake
after introduction of agriculture which, in turn, has increased
thyroid hormone levels in the human body (Kopp 2004).

35 Increased levels of thyroid hormone, especially in combina-
tion with inappropriate iodine supply, cause several detri-
mental systemic disorders (Motomura and Brent 1998;
Kopp 2004). Therefore, we assume that the emergence of
new nonsynonymous mutations is probably an organismal

40 reaction to this new hormonal status. Hypothetically, this
reaction could be a kind of prevention mechanism, or, on
the contrary, a consequence of thyroid hyperfunction.

We revealed significant changes in the PI3K-Akt signaling
pathway. It is one of the universal signaling pathways, which

45 are active in most of the human body’s cells. It is responsible
for a variety of fundamental processes, such as apoptosis,
cellular growth, proliferation, cell survival, metabolism, and
others (Song et al. 2005; Engelman et al. 2006; Duronio 2008;
De Santis et al. 2017). This pathway was shown to play an

50 important role in immunity, cancer, and long-term potenti-
ation (Fresno Vara et al. 2004; Hou and Klann 2004; Sui et al.
2008; Weichhart and Saemann 2008; Porta et al. 2014; Chen
et al. 2017; Pons-Tostivint et al. 2017). The PI3K-Akt signaling
pathway is activated by different stimuli including antigens,

55 inflammation, environmental toxicants, and drugs (Song et al.
2005; Engelman et al. 2006; Duronio 2008; De Santis et al.
2017). Therefore, any of the factors described above (changes
in diet, pathogen environment, xenobiotics) could affect this

pathway and stimulate accumulation of nonsynonymous
60mutations in it.

The hypertrophic cardiomyopathy (HCM) pathway also
shows signals of selection during the past 6,000 years. HCM
is an autosomal dominant disease, which is manifested as a
functional impairment of the heart. It occurs in approxi-

65mately 0.2% of modern populations (Cirino and Ho 1993;
Marian 2010). The course of the disease is very often asymp-
tomatic; however, in some cases, especially with intensive
physical activity, a sudden cardiac death can occur. For ex-
ample, hypertrophic cardiomyopathy is the leading cause of

70sudden cardiac death in young athletes (American College of
Cardiology Foundation/American Heart Association Task
Force on Practice Guidelines et al. 2011; Barsheshet et al.
2011). We suppose that the higher prevalence of nonsynon-
ymous SNPs in the modern group in comparison to the an-

75cient group can be a consequence of the gradual change in
European lifestyle from pretechnological agrarians to modern
postindustrial societies: a redistribution of physical load, as
well as of balance between calorie uptake and physical activity
(Lightfoot 2013). Genetic monitoring and adequate therapy

80(American College of Cardiology Foundation/American Heart
Association Task Force on Practice Guidelines et al. 2011;
Cirino and Ho 1993) probably also play a role in the accumu-
lation of HCM-associated mutations in modern Europeans
and, therefore, one can expect an even higher frequency of

85these mutations in the future.
Olfactory transduction, the capacity to discriminate odors,

shows the strongest signal of selection (table 1). As reported
before, olfactory genes in primates have a tendency to pseu-
dogenization (Gilad, Man, et al. 2003; Pierron et al. 2013;

90Somel et al. 2013). In humans, approximately 60–70% of
olfactory genes are pseudogenes; this probably reflects a de-
creasing need for olfactory perception in great apes and es-
pecially in humans (Rouquier et al. 1998; Gilad, Bustamante,
et al. 2003). Indeed, relaxed selection has been described for

95most human olfactory genes (Gilad, Bustamante, et al. 2003;
Somel et al. 2013) leading to fast accumulation of mutations
in these genes (Miyata and Hayashida 1981; Gilad, Man, et al.
2003). According to our results, this process has also been
taking place during recent human microevolution. Most

100likely, the process of pseudogenization of olfactory genes is
still ongoing. At the same time, we cannot exclude the pos-
sibility that introduction of new cultural practices (new types
of food, perfume, etc.) provides new directions for selection,
at least for some olfactory genes.

105All the pathways described above have been accumulating
nonsynonymous mutations during the past 6,000 years. At
the same time, we revealed three pathways with the opposite
pattern: The modern group has significantly fewer mutations
than the ancient one. These pathways are described below.

110We revealed significant changes in a pathway associated
with oocyte meiosis. Oogenesis is the most important part of
female reproductive function. It determines the timing of
puberty and menopause as well as the effectiveness of repro-
duction. It has been shown that all these parameters are

115strongly influenced by environmental factors (Gluckman
and Hanson 2006b; Gold 2011; Henneberg and Saniotis
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2013). Retrospective analysis and direct data suggest signifi-
cant fluctuations in menarche onset during the past several
millennia (Gluckman and Hanson 2006a, b; Gillette and
Folinsbee 2012; Henneberg and Saniotis 2013); a tendency

5 has been reported for later menopause in modern
European women, which is probably connected with lifestyle
and overall quality of life (Gold 2011). Several hypotheses
discuss the fluctuations in the number of childbirths:
Alterations in nursing and dietary habits in early agricultur-

10 alists might have caused a shortening of birth intervals
(Kolata 1974; Hewlett and Lamb 2005; Gluckman and
Hanson 2006a, b; Gold 2011), and subsequent introduction
of artificial childbirth reduction (including induced abortions
and, later, contraception) decreased the number of pregnan-

15 cies. In turn, all these changes affected the number of men-
strual cycles during a woman’s life. Overall, it is expected that
changes in the duration of the reproductive period and in
the number of maturing oocytes might affect oocyte mei-
osis. The decrease in the number of nonsynonymous

20 mutations in the oocyte meiosis pathway during the
past six millennia probably implies that despite all envi-
ronmental changes, in Europeans there was a tendency to
keep the organism’s homeostasis in such an important
process as reproduction. The other possibility can be a

25 shift in the mutation spectrum in order to adapt to the
new environmental conditions.

Two more pathways (long-term potentiation and dopa-
minergic synapse) for which the number of nonsynonymous
substitutions in the modern group is significantly less than in

30 the ancient group are associated with cognitive functions,
especially memory and learning. Information is probably
the most rapidly changing factor of our environment.
During the past millennia, ways of information presentation
and perception have been completely altered. Six thousand

35 years ago information was being accumulated from a rela-
tively small geographic area and changed relatively slowly.
With the evolution of transport and transmission techniques
information capacity has expanded globally, and the quantity
and quality of data to process have been markedly enlarged.

40 Moreover, the main cognitive tasks in Europe have also dra-
matically changed during this time period (e.g., tool-making
vs. car driving). This presumably affects such information per-
ception systems as learning capability and memory. However,
mutations in cognitive function genes can lead to detrimental

45 consequences (indeed, mutations in genes in long-term po-
tentiation and dopaminergic synapse pathways can cause
schizophrenia, obsessive-compulsive disorder, Parkinson’s dis-
ease, drug addiction, and many other neurological and neu-
ropsychiatric disorders; Bibb 2005; Centonze et al. 2005; Kauer

50 and Malenka 2007). These deleterious mutations should be
eliminated through strong selection, both directly and indi-
rectly via sexual selection connected with behavioral reac-
tions. Data on molecular evolution of the human brain are
still controversial, but most researchers suggest that coding

55 regions of most human brain genes are subjects of negative
selection (Miyata et al. 1994; Duret and Mouchiroud 2000; Hill
and Walsh 2005; Tuller et al. 2008; Huang et al. 2013). Our
results agree with this suggestion; at the same time, the

observed trend can indicate directional changes as a response
60to the modified cognitive tasks.

In summary, we have revealed selection signatures in func-
tional processes responsible for metabolic transformations,
immune responses including protection against pathogens,
alloimmune and autoimmune reactions, signal transduction,

65physical activity, sensory perception, reproduction, and cog-
nitive functions. Interestingly, different environmental factors
have induced different types of natural selection. An increase
in the number of nonsynonymous mutations in modern
humans can indicate signs of either positive or relaxed selec-

70tion, whereas a decrease suggests negative or, on the contrary,
strong positive selection. For the identification of the exact
type of selection an additional analysis is required.

The weakness of our approach is that it is impossible to
identify selection signals caused by modifications in a single

75gene (like, e.g., it was done in the work of Mathieson et al.,
2015). Instead, it is possible to reveal multiple modifications in
pathways that are the result of many weak signals undetect-
able by using other methods. Therefore, we believe that our
results complement existing data on recent selection in the

80European population. Based on our results, we suppose that
the most important civilization events that have affected
adaptive reactions are changes in diet and the pathogenic
environment, the introduction of xenobiotics, modifications
in lifestyle and in the information background. To our knowl-

85edge, our work is the first evidence for natural selection on the
functional level. Our results show that even during a relatively
short period of time, the human genome can be significantly
shaped by selection if the selection is induced by man.

Our results raise a number of questions, namely, when did
90selection began to influence the revealed processes? How

their subsequent evolution was affected? To address these
issues, further analyses on previous (Early/Middle Neolithic,
Paleolithic) and intermediate (Iron Age, Middle Ages) time
periods should be performed. We are convinced that, with

95the emergence of new data, we will better understand how
deeply and how rapidly biochemical and metabolic pathways
can be affected by cultural and social changes.

Materials and Methods

Ancient Data Preparation
100We used published data from 159 European samples dated

3,500–1,000 BCE (Gamba et al. 2014; Allentoft et al. 2015;
Haak et al. 2015; Mathieson et al. 2015). The focus of our
investigation was the Bronze Age; however, since the borders
between different archeological cultures and time periods are

105blurred, we also used samples attributed to the Late Neolithic
(supplementary table 1, Supplementary Material online).
Selected individuals probably spoke Indo-European family
languages that currently prevail in Europe (Haak et al.
2015). Most of the Late Neolithic/Bronze Age individuals

110have been previously shown to be genetically related to
Yamnaya culture (Lazaridis et al. 2014; Allentoft et al. 2015;
Haak et al. 2015) and to most modern European ethnic
groups (Allentoft et al. 2015; Haak et al. 2015).
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According to the authors (Allentoft et al. 2015; Haak et al.
2015), genomic reads successfully passed quality controls on
mitochondrial and bacterial DNA contamination. To ensure
authenticity and remove batch effects, we used a Bayesian

5 approach implemented in mapDamage 2.0 (Jonsson et al.
2013). We trimmed the past two nucleotides from each se-
quence; we further restricted our analyses to sites with base
quality �20. To achieve statistical significance of the results
we implemented the pipeline described in figure 2 and briefly

10 outlined below. SNPs were called independently in every sam-
ple, filtered by mapping quality (Q> 30) and SNP quality
(QUAL >20); if possible alleles were supported by the same
number of sequence reads, we selected an allele at random.
We set the allele to “no call” if the position was not covered

15 by sequence reads. Genotypes for samples were called using
the “call” command of bcftools (samtools, bcftools) (Li et al.
2009) and filtered for quality score (QUAL �20) and the
coverage was required to be at least three per sample.

We calculated the density and number of nonsynonymous
20 SNPs per sample (supplementary table 6, Supplementary

Material online). We excluded eleven samples from analysis
based on 1) absence of genotypes in every position, 2) out-
grouping during PCA analysis shown in the original publica-
tion (supplementary table 2, Supplementary Material online),

25 or 3) due to enormous SNPs numbers compared with other
samples. For this, we computed the proportions of SNPs in
the samples through all the 305 pathways in the KEGG data-
base. To filter the samples, we calculated the proportion of
SNPs in every sample for every pathway and then acquired

30 the kernel density distribution for median proportions of
SNPs per sample per pathway. The samples which were out-
side the 99th percentile were rejected from further analysis.
The 99th percentile for the median proportion of SNPs per
pathway was 7.0%, whereas the samples RISE98, RISE00, and

35 RISE423 had average relative proportions of SNPs per path-
way of 7.1%, 7.0%, and 15.1%, respectively. Therefore, these
samples were rejected from further analysis. The final Bronze
Age subset consisted of 150 samples (supplementary table 2,
Supplementary Material online).

40 The resulting SNPs were annotated with the ANNOVAR
(Wang et al. 2010) tool using the hg19 human genome an-
notation and the refGene database (http://varianttools.sour-
ceforge.net/Annotation/RefGene). Synonymous and
nonsynonymous SNPs were pooled into 2 separate single

45 data sets, resulting in a collection of 40,573 synonymous
SNPs and 48,860 nonsynonymous SNPs, respectively. Next,
we calculated the numbers of synonymous and nonsynon-
ymous SNPs per KEGG pathway.

Modern Data Preparation
50 Modern data were obtained from the latest release of the

“1000 Genomes Project” database (Genomes Project) (http://
www.internationalgenome.org). We selected data only for
European populations with Indo-European roots. Originally,
the European subset includes British, Finnish, Spanish, Italians,

55 and Utah residents with Northern and Western European
ancestry. First, we excluded the Utah residents: Although
they have European ancestry, the past several centuries

they have been living in different geographical and cultural
conditions, having different lifestyle, different diet, etc.

60(Willett et al. 2006). Next, we excluded Finnish, since their
population history is different from other European popula-
tions (Lao et al. 2008). The Modern data set contained 305
individuals: 91 from the British population in England and
Scotland, 107 from the Iberian peninsula (Spain) and 107

65individuals from Toscani (Italy). SNPs were functionally anno-
tated with the ANNOVAR tool (Wang et al. 2010) using the
hg19 human genome annotation and the refGene database.

Depth Files Correction
Due to poor data sequence coverage, even after aggregation

70of sequence reads from all the Bronze Age samples, complete
genome coverage had not been achieved. Prior to calculating
the distribution of nonsynonymous SNPs in the Bronze Age
and modern Europeans, to avoid artificially high enrichment
scores, we restricted our analysis of modern Europeans to

75genomic positions covered by the Bronze Age sequence reads.
SAMtools (Li et al. 2009) was used for coverage calculation,
then the results were filtered to keep coverage above 3 and
mapping quality above 30 (Q> 30). We generated a list of
covered bases and used this list to select those SNPs in the

80modern human subsets that are covered in the Bronze Age
samples. After this filtering, the modern subsets contained
72,558 synonymous and 96,710 nonsynonymous SNPs.

KEGG Annotation and Preparation for Enrichment
Analysis

85Distribution of SNPs in Genes
A combined lists of 1) synonymous SNPs and 2) nonsynon-
ymous SNPs from the Bronze Age individuals and present-day
Europeans was mapped onto 305 KEGG pathways (Du et al.
2016), and counts of SNPs per pathway were computed. To

90minimize the false-positive rate, we included only pathways
containing more than five genes with SNPs and with sum
covered pathway length more or equal to 50% in aggregated
ancient data (table 1 and supplementary table 2,
Supplementary Material online).

95Enrichment Analysis
To analyze differences in numbers of SNPs per pathway be-
tween the Bronze Age and present-day individuals, we calcu-
lated 1) DSSE scores and 2) DNSE scores. The calculations for
DSSE and DNSE were performed in a same way; below, we

100describe the calculations for DNSE.
First, we calculated the number of nonsynonymous SNPs

in both the ancient and modern groups. We assume that
during neutral evolution similar pathways accumulate non-
synonymous SNPs at the same rate, and during enrichment

105analysis such pathways would fit a normal distribution,
whereas pathways that are affected by evolutionary pressure
would be outliers from this distribution (supplementary fig. 4,
Supplementary Material online). If K¼ 305 is the total num-
ber of studied pathways, and i¼ 1,. . ., K, number of the path-

110ways, in Bronze Age and modern samples, ni and mi denote
the number of nonsynonymous SNPs per ith pathway. The
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expected (equilibrium) fraction of nonsynonymous SNPs in
ancient data is given by p¼ n/(nþm), where p is the fraction
of ancient nonsynonymous SNPs in the whole analyzed sub-
set, n is the amount of ancient nonsynonymous SNPs in

5 KEGG pathways, m is the amount of modern nonsynony-
mous SNPs in KEGG pathways. The fraction pi of ancient
nonsynonymous SNPs in the ith KEGG pathway is pi ¼ ni/
(niþmi), where ni is the amount of ancient nonsynonymous
SNPs in the ith pathway, mi is amount of modern nonsynon-

10 ymous SNPs in the ith pathway. From acquired numbers
enrichment DNSE scores were computed for every pathway
with continuity correction (Fleiss et al. 2003):

DNSEScore ¼
ðp� piÞ6 1

2ðmiþniÞffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ
miþni

q :

After computing the DNSE scores (distributed normally,
15 Shapiro–Wilk test P-value >0.01), we calculated P-values us-

ing Bonferroni and Benjamini–Hochberg corrections and
identified the differentially enriched pathways. The pathways
were considered to be differentially enriched if absolute value
of the DNSE score >4, and the adjusted P-value <0.01.

20 However, in 2017 in Nature Human Behavior (Benjamin
et al. 2017) the manuscript “Redefine statistical significance”
was published, where it was proposed to decrease the P-value
threshold from 0.01 to 0.005. We implemented the proposed
threshold on our data to avoid further false-positive enrich-

25 ment signals resulting in alternative lists of enriched
pathways.

In order to normalize nonsynonymous SNPs on synony-
mous SNPs, we performed the following procedure.
Bonferroni-adjusted P-values were log-transformed (base

30 10) and multiplied by the sign of the DNSE statistic, so that
positive scores correspond to enrichment in modern groups
and negative scores to enrichment in ancient groups, respec-
tively. As a condition of significance, we required the follow-
ing: The P-value of the nonsynonymous test was below the

35 P-value of the synonymous test for each pathway. In addition,
it was required for the Bonferroni-corrected P-value to be
below 0.01. For each pathway, the P-value of the synonymous
test was above the P-value of the corresponding nonsynon-
ymous test.

40 Validation of the Method
To validate our method, we compared it with the method
implemented by Somel et al., 2013. We calculated DNSE
scores between chimpanzee and their ancestors (combined
genomes from different species of primates; data from Prado-

45 Martinez et al., 2013, https://www.nature.com/articles/na-
ture12228). Our results confirmed the conclusions of Somel
et al.: Olfactory transduction pathway demonstrated the sig-
nature of relaxed selection in chimpanzee (enriched in com-
parison with primates; it is the only pathway enriched in

50 chimpanzee) (supplementary table 8, Supplementary
Material online). As in Somel et al., 2013, proteasome pathway
did not demonstrate any signs of selection (no pathway
enrichment) (see Somel et al., fig. 2 and present study,

supplementary table 8, Supplementary Material online). We
55also revealed several pathways which are enriched in primates

in comparison to chimpanzee. This can indicate possible neg-
ative or strong positive selection in chimpanzee. However,
this suggestion requires additional thorough analysis which
is outside the scope of our paper.

60Comparison of Regulatory SNPs Distribution
To compare regulatory SNPs in Bronze Age and modern
individuals, we extracted 10,000 experimentally validated pro-
moters and 50-UTRs from the DBTSS database (https://dbtss.
hgc.jp). Sequences [TSS �1,000, TSSþ 1,000] were extracted

65and MATCH software with TRASNFAC database (https://
www.ncbi.nlm.nih.gov/pubmed/12824369, with parameters
set to minimize false-positive matches) was applied to iden-
tify putative transcription factor binding sites (TFBS) in those
sequences. A total of 61,451,840 putative TFBS were identified

70in these regions. The TRANSFAC database is highly degener-
ate with different entries having the same or similar matrices,
therefore producing overlapping predictions on a genome.
Such overlapping putative TBFS were merged into 88,513
contiguous regulatory sequences. Furthermore, we removed

75those regions that were not fully covered by ancient DNA
sequences, leaving us with 31,036 regulatory fragments. A
proportion test was performed similarly to the calculation
of enrichment scores in coding regions.

PCA and reAdmix
80The principal component analysis (PCA) was carried out in R

using the ADMIXTURE vectors for Ancient and European/
Worldwide modern individuals. The ADMIXTURE software
implements a model-based Bayesian approach that uses a
block-relaxation algorithm to compute a matrix of ancestral

85population fractions in each individual (Q files) and infer allele
frequencies for each ancestral population (P files) (Alexander
et al. 2009; Alexander and Lange 2011). We applied
ADMIXTURE in unsupervised mode to the combined data
set of modern and ancient individuals. We varied the number

90of components between K¼ 6 and K¼ 17, recording the
value of cross-validation (CV) error and picked K¼ 7 for
the PCA analysis as a sufficient number of components to
distinguish subpopulations from each other.

The PCA analysis was performed using the R package
95princomp with centering and scaling parameters and then

visualized using the first two components cumulatively cor-
responding to 60% of the variance among worldwide modern
and ancient individuals.

Additional ancient samples for reAdmix (Kozlov et al.
1002015) analyses were obtained from (Gamba et al. 2014;

Allentoft et al. 2015; Haak et al. 2015; Mathieson et al.
2015). This data set was combined with the modern
European samples from the 1,000 Genomes database. The
resulting data set contained 1) the Bronze age subset used

105in this study (n¼ 150), 2) early Neolithic data (n¼ 32), and 3)
Western European hunter-gatherers (n¼ 12). A reference
data set was assembled from all ancient individuals, and mod-
ern individuals were represented as a linear combination of
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ancient ones using the reAdmix algorithm. Each modern
population was represented as

Modern Population ¼ w1BA þ w2EN þ w3WHG þ e;

where BA is “Bronze Age”, EN is “Early Neolithic”, WHG is
“Western Europe hunter-gatherers” data, e is an unassigned
part, and coefficients were determined using the differential

5 evolution algorithm. Modern individuals from 1,000 genomes
(British population [n¼ 6], Toscani [n¼ 6], and Iberian
[n¼ 5]) were clustered within self-reported ethnic groups
based on similarity of their admixture vectors, and the self-
reported identity was validated using leave-one out proce-

10 dure and Euclidian distance to the reference population.
Average contributions of ancient genomes to modern
individuals were computed for each cluster of modern
individuals.

Data Access
15 SFTP access with ANNOVAR annotated vcf files for ancient

man and filtered nonsynonymous and synonymous files from
modern samples:

ip 85.89.112.202

port 2203

20 username: bronze_man

password: bronze_man

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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