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Abstract

Precise knowledge how tree growth will respond to future climate change is essential
for the adapted management of forest ecosystems. By conducting sensitivity tests,
tree-ring process-based cambial growth models can provide an innovative way to
better understand wood formation under different climate change scenarios. As a case
study in semi-arid north central China, we used artificially increased or decreased
daily climatic data as input to the Vaganov-Shashkin dynamic growth model to
investigate the response of wood formation to climatic change. By calibrating the
tree-ring model using daily climate data over the period 1951-2010, we found that
81% of radial growth was driven by soil moisture, while 13% of growth was
controlled by temperature. During the main growing season June—August, significant
differences in the integral growth rate occurred after changing precipitation by + 30%
or by decreasing temperature by 3.0 °C (p < 0.05). However, increasing temperature
showed only modest effects on tree radial growth rate. During the past 60 years, a
significant advancement of the starting dates of growth was detected, whereby non-
significant variability was found for the ending dates of growth. Contemporaneously,
the effect of previous winter temperature (previous December to current January) on
cambial growth initiation declined after 1980. Significant differences in the growth
onset dates only occurred when temperature was reduced by 4.5 °C or increased by
5.5 °C. Moreover, both the onset and ending dates of growth in the study region were
more sensitive to cooling rather than to warming. If temperature will increase by 2°C
and precipitation will increase by 30% at the end of this century as predicted by some
Earth system models, tree radial growth might increase by 19% in the study region,
compared to the average during the period 1952-2010. Consequently, tree stem radial
growth is expected to increase under a warming and wetting climatic scenario, but
will decrease under drying conditions.

Key words: Process-based model, xylogenesis, tree-ring width series, climate change,
sensitivity test, forest ecosystems
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1. Introduction

The Earth’s climate has changed during the past decades and will continue to change
further in the near future (IPCC, 2013). Consequently, terrestrial (Delgado-Baquerizo
et al., 2017; Pecl et al., 2017, Pefiuelas et al., 2018) and marine (Henson et al., 2017;
Hoegh-Guldberg and Bruno, 2012; Sweetman et al., 2017) ecosystems have already
clearly and fundamentally responded to such changes. Among these ecosystems,
forests are expected to be particularly sensitive, because the long lifespan of trees
prevents a prompt adaptation to quick environmental changes (Lindner et al., 2010).
Indeed, the relationships between climate and tree growth, hereafter defined as stem
radial growth, has been extensively investigated either by traditional
dendroclimatology (Dulamsuren et al., 2017; Fan and Bréauning, 2017; Huo et al.,
2017; Knutzen et al., 2017; Touchan et al., 2016), or by ecophysiological studies
(Allen et al., 2010; Anderegg et al., 2013; Liu et al., 2013). A large part of the studies
confirms that water stress caused by drought and/or warming is a main driver of tree
mortality and decline in forest productivity (Williams et al., 2013; Zhao and Running,
2010). According to the most recent reports of the Intergovernmental Panel on
Climate Change (IPCC), climate will continue to warm. Based on such expectations,
simulations of forest ecosystem dynamics require precise knowledge on the future
growth of trees under changing climatic conditions.

Reliable climate predictions are crucial for quantifying the impacts of climate
change on tree growth. Earth system models are the current state-of-the-art climate
models (Bao et al., 2015), which simulate terrestrial and marine ecosystems and offer
a common framework for ecological research related to climatic processes, analyses
of vulnerability, impacts, and adaptation (Bonan and Doney, 2018). However, these
climate change scenarios still exhibit uncertainties and await further improvement
(Balaji et al., 2018; Rogers et al., 2017; Stouffer et al., 2017). For example, the model
uncertainty for the projected precipitation from five climate models on the Tibetan
Plateau represented 60% (Gu et al., 2018). Based on 20 general circulation models
from the Coupled Model Intercomparison Project Phase 5 (CMIPS5), the magnitude of
seasonal and annual precipitation was overestimated in most regions of China (Chen
and Frauenfeld, 2014). Hence, in remote areas such as the mountainous regions of
north central China, where weather stations are sparse and climatic data are short-term
and unevenly distributed, the projections will be more uncertain or unreliable. This
holds especially true for precipitation, considering its high spatial variability and its
great environmental impacts. As a consequence, predicted changes in precipitation
showed relatively large biases appeared in the rainy season from May to September in
these areas (Guo et al., 2017; Zhu et al., 2018).

Tree-ring process-based models represent a reliable tool to better understand tree
growth under different climate change scenarios. Various process-based models have
been developed for tree-ring formation by integrating different related processes (for
details, see Guiot et al., 2014). Among the existing models, the Vaganov-Shashkin
(VS) model is probably most widely used (Shashkin and Vaganov, 1993; Vaganov et
al., 2011). For example, it has been extensively applied in the US and Russia

3
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(Anchukaitis et al., 2006; Arzac et al., 2018; Evans et al., 2006; Popkova et al., 2018),
Mediterranean region (Sanchez-Salguero et al., 2017; Touchan et al., 2012) and China
(He et al, 2017; Yang et al.,, 2017; Zhang et al.,, 2011; Zhang et al., 2016).
Specifically, the successful simulations of intra-annual density fluctuations in tree
rings confirm that the VS model is suitable to study climate impact on tree-ring
structures (Popkova et al., 2018). Different versions or improvements of the VS
model have been released. VS-Lite is a simplified descendant of the full VS model
and takes monthly, rather than daily, accumulated precipitation and average
temperature data as inputs (Tolwinski-Ward et al., 2011). The VS-Oscilloscope is a
new visual parameterization approach of the VS model and allowing an easy
simulation of tree-ring growth (Shishov et al., 2016).

In this study, we simulated and predicted the response of wood formation to
climate change in semi-arid north central China by conducting sensitivity tests from
the VS model. We aim to (1) simulate wood formation (including growth rate and
xylem phenology) retrospectively for the past sixty years (1951-2010); (2) analyze
wood formation on the daily time scale and quantify the respective contributions of
precipitation and temperature, and (3) predict the response of wood formation to
different climate change scenarios using sensitivity tests. Our analyses tested the
following two hypotheses: 1) the rate of radial growth is mostly influenced by soil
moisture; i1) xylem phenology, i.e. the starting and ending dates of stem growth, is
driven by temperature.

2. Material and Methods
2.1 Study site and climate

The study site is represented by an altitudinal transect located between 2400 and 2740
m as.l on the Hasi Mountain (37.0 °N, 104.5 °E) in Jingyuan County, Gansu
Province, north central China. According to the records of the nearest meteorological
station at Jingyuan (36.6 °N, 104.7 °E, 1398 m a.s.l.), the mean annual temperature
during the period 1951-2010 was 9.1 °C. January was the coldest month with a mean
temperature of -7.1 °C and July was the warmest one (22.6 °C on average). Annual
precipitation was 231 mm, 81% of which falling during May—September. During the
past six decades, we observed significant warming in winter, spring and autumn (p <
0.05), but not in summer (p > 0.05). In particular, June—September temperatures
showed a negative trend during 1951-1980, followed by a warming tendency. No
trend was observed for seasonal or annual precipitation.

2.2 Tree-ring width chronology

Chinese pine (Pinus tabulaeformis Carr.) is the dominant tree species in the study
region, mainly dominating the north-facing slopes. A total of 187 increment cores
from 110 living trees were extracted at breast height with increment borers. The
samples were prepared following standard dendrochronological procedures (Speer
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2012) and the established tree-ring width chronology (AD 1698-2010) has been
published before (Kang et al., 2012). In this study, we focused on the tree-ring width
chronology during the instrumental period 1951-2010.

2.3 VS modelling

The Vaganov-Shashkin (VS) model is based on the assumption that climatic
influences are associated nonlinearly with tree-ring growth through controls on the
process of cell formation in the developing xylem (Shashkin and Vaganov, 1993;
Vaganov et al., 2011). Simulated tree-ring width series are determined by comparing
daily temperature and soil moisture budget to growth functions using the most
limiting factor (Fritts, 1976). The integral tree-ring growth rate Gr(t) is estimated
based on the equation
Gr(t) = GrE(t) x min {GrT(t), GrW(t)},

where GrE(t), GrT(t) and GrW(t) are the partial growth rates, calculated
independently from solar irradiation, temperature, and soil moisture content,
respectively.

Daily precipitation and temperature records from the Jingyuan meteorological
station were used as input data. Considering the different elevations between the
meteorological station and the tree-ring sampling site, we adjusted the daily
temperature by a rate of 0.56 °C/100 m. The most appropriate physiological
parameters were determined by iteratively debugging and comparing the difference
between the actual and simulated tree-ring width series. To test the performance of the
model, the analyzed period was split into a calibration and verification sub-period,
and the respective root mean squared error (RMSE) and reduction-of-error statistic
(RE) were calculated. We also evaluated the relationships of their first-order
difference series between the modeled and actual tree-ring width chronology to show
the high-frequency variability. The parameters were calibrated using daily climate
data for 1951-1984. The final parameters were applied to generate tree-ring indices
for the verification period 1985-2010. The model outputs (GrT, GrW, GrE and Gr) of
each year were used for further analyses. Daily integral growth rates were
accumulated to estimate annual wood production. We also extracted the starting (start
of growing season, SOS) and ending (end of growing season, EOS) dates of growth to
study the temporal variability in xylem phenology.

2.4 Sensitivity tests and statistics

We performed sensitivity tests to assess the response of wood formation to different
climate change scenarios by progressively modifying the climatic factors introduced
into the model. Daily temperature and precipitation were modified by step of 0.5°C
and 10%, and within a range of = 6.5 °C and + 90%, respectively. Each scenario was
conducted independently, resulting in a total of 26 and 18 model simulations under
changing temperature and precipitation, respectively. The combined effects of
temperature and precipitation were also analyzed by modifying temperature by + 1-4
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°C and precipitation by + 30%—-70%, resulting in 48 simulations. The estimated Gr
and xylem phenology dates were extracted from each climatic scenario. We tested for
significant mean differences in Gr after changing daily temperature or precipitation
using a r-test. Data were log-transformed (log x+1) when distribution diverged from
normality. Such statistics were also applied to test for the differences in xylem
phenology.

The sensitivity of xylem phenology to climatic change was also tested by
statistical bootstrap correlations using DendroClim2002 (Biondi and Waikul, 2004).
Xylem phenology was the dependent variable and the regressors were the monthly
mean temperatures and the monthly sums of precipitation for each year for a time
window including the months from previous August to current September. Partial
correlations were performed to exclude collinearity within the climate data.
Correlations were based on the whole common period 1952-2010, and before and
after 1981 to investigate the stationarity of the relationships.

3. Results

By simulating wood formation during the past 60 years, we identified the most
sensitive parameters influencing tree growth, represented by minimum soil moisture
(Wmin), the lower range of optimal soil moisture (W), minimum temperature (Tpn),
and the lower range of the optimal temperature (T,y). Changes of these parameters
resulted in substantial differences between the simulated and actual tree-ring width
series. Using the estimated parameters (Table 1), we obtained consistent variability
during their common period (Fig. 1). The first year (1951) of the meteorological
record was excluded to reduce the influence of model initialization. Significant
positive correlations between the original as well as their first-order difference series
highlight the ability of the process-based VS model in the study region (p < 0.01;
Table 2). The positive values of the reduction-of-error also indicate robustness of the
results. Moreover, even if we changed temperature or precipitation for the sensitivity
tests, 81.5% of the correlations (in total 98 correlations) between simulated tree-ring
width series and the actual chronology still passed the significance level of p < 0.05.

3.1 Wood production and climate

According to the model output, the integral growth rate (Gr) of tree stem radial
growth was mostly affected by soil moisture (GrW), temperature (GrT) or solar
irradiance (GrE). In particular, GrW limited radial growth from late April (day of year
(DOY) 115) to late August (DOY 238) because partial growth rate due to GrW was
generally lower than partial growth rate due to GrT (Fig. 2). Temperature mainly
influenced Gr from late August to the end of September (DOY 274). On average, soil
moisture limited radial growth for 124 days and temperature for 31 days.
Consequently, as accumulated from the integral growth rate, 81 and 13% of radial
growth was determined by soil moisture and temperature, respectively.

A prominent pattern for the variability of Gr from the sensitivity tests was

6
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revealed (Fig. 3). By separately increasing or reducing precipitation, daily average
and maximum growth rates were strongly increased or decreased, respectively,
especially during DOY 150-240 (Fig. 3a). However, changes in temperature showed
only modest influence on tree radial growth (Fig. 3b). A #-test revealed significant
differences in Gr during June—August (DOY 150-240) under changing precipitation
by = 30% (p < 0.05). Mean Gr became significantly different after a cooling of 3.0 °C
(p < 0.05). However, increasing temperature showed a modest effect Gr, even under
warming by 6.5 °C. A combined effect of changing precipitation and temperature
revealed that the growth rate was significantly different between wet and dry
conditions (Fig. 3¢). Compared to the dry scenarios, a prominent higher growth rate
(including mean and maximum Gr) occurred if the climate was wet.

The variability in wood production under different climate change scenarios was
further evaluated from the accumulated integral growth rate during the main growing
season June—August (Fig. 4). Accordingly, warm and wet condition could definitely
enhance wood production (Fig. 4a). Compared to the measured tree-ring width under
current climate conditions, the highest variability in wood production could achieve
37.3% with increase of temperature and precipitation by 2 °C and 70%, respectively.
Interestingly, wood production reduced under a cooling of 3 °C and increasing
precipitation by 30%. Moreover, cooling by 4 °C associated to increasing
precipitation (+30%, +50%. +70%) could not stimulate wood production (Fig. 4c).
Nevertheless, wood production was consistently reduced under warm and dry or cold
and dry situations (Fig. 4b, d), depending on the amplitudes of changing precipitation
or temperature. The reduction reached 58% and 62% if precipitation reduced by 70%
and temperature changed by + 4°C.

3.2 Xylem phenology and climate

During the past 60 years, a significant advancement of the starting dates of tree radial
growth was found in the study region (p < 0.05, Fig. 5a). The initiation dates
advanced by 2.3 d/decade. More interestingly, we detected a higher rate of 6.4
d/decade before 1981. However, the rate reduced and was not significant after 1981 (p
> 0.05). No significant trend of the ending dates of growth from 1952 to 2010 or from
1981 to 2010 was observed (Fig. S5b). However, a prominent advancing tendency
occurred before 1981, with a rate of 4.1 d/decade.

The sensitivity of xylem phenology to climate change tested by bootstrap
correlations during 1952-2010 showed that SOS was influenced by the temperature of
the previous winter (Fig. 6a). Specifically, mean temperature of previous December
and current January significantly influenced the onset dates of growth (p < 0.05). The
effect of monthly precipitation from previous August to current September was not
significant (Fig. 6b). Considering EOS, we detected significant influences of summer
and early autumn temperature, especially in June, July and September (Fig. 6c).
March temperature also positively affected EOS. Precipitation exhibited significant
correlations with EOS during previous December (positive), current February
(positive) and July (negative) (Fig. 6d). The negative influence in July was probably

7



307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

caused by the collinearity between temperature and precipitation, because partial
correlations further confirmed that the significant correlation with precipitation
disappeared when controlled for temperature. Hence, we could not identify a
significant correlation between summer precipitation and EOS in the study region.
Assembled with different seasonal climatic data, the highest correlation with SOS was
found with temperature averaged from previous December to current January (r = -
0.56, p < 0.01), while EOS was mostly determined by June—September temperature (r
= 0.40, p < 0.01) during 1952-2010. More interestingly, the significant correlation
between SOS and previous December to current January temperature robustly existed
during 1952-1980 (Fig. 6a). However, such correlations disappeared over 1981-2010,
under warming conditions. No pattern of such changed correlations for EOS was
observed (Fig. 6¢, d).

Sensitivity tests indicated significant linear trends for SOS and EOS after
changing temperature (Fig. 7, right panel). Significant differences in SOS occurred
under a cooling of 4.5 °C or a warming of 5.5 °C (p < 0.05). Differences in EOS were
not significant even under a warming of 6.5 °C. By independently changing
temperature, an average slope of 4-5 d per degree Celsius was revealed for SOS and
EOS. In particular, we detected significant differences in the slopes under warming
compared the cooling scenario. The slopes of SOS and EOS were -6.1 and 5.4 d per
degree Celsius under cooling, reducing to -3.8 and 3.8 d per degree Celsius under
warming. In contrast, no clear pattern was observed between xylem phenology and
changing precipitation (Fig. 7, left panel). Significant differences in EOS occurred
when precipitation was reduced to 60%, whereas increases in precipitation did not
influence EOS. Combined effects of changing temperature and precipitation on xylem
phenology indicated that warm and wet conditions could advance SOS and delay EOS.
On the contrary, cold and dry conditions mainly delayed SOS and advanced EOS. No
clear patterns were observed under the warm and dry conditions or cold but wet
scenarios for the two xylem phenologies.

4, Discussion

In this study, we analyzed wood formation during the past 60 years (1951-2010) in
semi-arid north central China, to evaluate the variability of growth and xylem
phenology under different climatic change scenarios. For this purpose, we compared
measured and simulated tree growth and then simulated stem radial growth under
several climatic scenarios using the process-based Vaganov-Shashkin (VS) model.
The high consistency between the actual and simulated tree-ring width series confirms
that the VS model is suitable to describe wood formation and to identify climate-
growth relationships in the study region. Discrepancies exist in the simulated results
which could be due to the fact that actual tree-ring width is not only affected by
temperature and precipitation, but also by other climatic or environmental factors that
are not integrated in the model. Nevertheless, progressively modifying daily
temperature and precipitation in the model represents one alternative way for the
simulation of wood formation under different climate change scenarios although
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uncertainties should be kept in mind.

Our first hypothesis was confirmed by the results, which revealed that rate of
radial growth was mostly influenced by soil moisture. Herein, the soil moisture data
were generated by the VS model as a function of daily precipitation, transpiration and
runoff (Evans et al., 2006). Since such data may be affected by temperature we
recommend some caution when interpreting this aspect. We quantified the respective
contributions of temperature (13%) and precipitation induced moisture variability
(81%) on tree-ring width series during the past 60 years. In dry regions or areas
characterized by shallow soils with limited ability to preserve water, the drought-
growth relationships are expected to be strong. Under conditions of low precipitation
or limited soil moisture, trees respond with reduced cell growth rates (Chaves et al.,
2002; Popkova et al., 2018), smaller cell lumen areas (Belien et al., 2012), or reduced
wood production rates (Arend and Fromm, 2007). For example, following an
exceptional summer drought in 2015, stems of six species across central Europe
sharply ceased radial growth at the onset of the drought event and hardly recovered
after the drought event (Dietrich et al., 2019). Drought can substantially reduce gas
exchange and induce xylem embolism (Balducci et al., 2015). During the period
19852014, the increasing trend of summer drought not only resulted in a reduced
wood formation, but also in an acclimation of the hydraulic architecture of L. sibirica
in Inner Asia (Khansaritoreh et al., 2018). Additionally, tree-ring width chronologies
also showed significant correlations with precipitation or drought records during the
past six decades in the arid and semi-arid regions of north China (Fang et al., 2010,
2012; Kang et al., 2012; Yang et al., 2014).

The second hypothesis affirming that wood phenology was driven by temperature
was also confirmed. The starting and ending dates of growth were influenced by
previous winter and current late summer to early autumn temperatures, respectively.
Accordingly, warmer climate conditions could induce earlier initiations or later
terminations of radial growth. Our simulations support an increasing number of
studies illustrating the key role of temperature in determining xylem phenology in
cold ecosystems (Deslauriers et al., 2017; Richardson et al., 2018), as well in moist
(Lupt et al., 2012; Rossi et al., 2008), as in dry sites (Li et al., 2017). Consistently,
experiments conducted in a winter-dormant ecosystem robustly showed that warming
treatments directly influence vegetation phenology at both sides of the annual period
of vegetation activity (Richardson et al., 2018). A positive correlation was identified
between spring phenological phases and March—-May temperatures by weekly
monitored results during 2008-2016 in Slovenia (Prislan et al., 2019). However, the
significant influence of precipitation or drought on the initiation of xylem phenology
in some arid study regions (Ren et al., 2017; Ziaco et al., 2018) was not confirmed by
our findings. More interestingly, we found that severe drought may trigger an earlier
end of growth in our study region. Specifically, in two years (2012 and 2013) of
monitored data, a significant influence of drought, but a small effect of temperature
on the ending dates was reported for Qilian juniper (Juniperus przewalskii Kom.) in
cold and arid regions of the northeastern Tibetan Plateau (Zhang et al., 2018).
Definitely, their two years monitoring data probably occurred under different weather

9
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conditions and therefore may result in some bias. Notably, input data in our model
were only available from the nearest meteorological station located in a valley (1398
m a.s.l.), while the sampling sites were located at higher elevations (2400-2740 m
a.s.l.). If soil moisture was not a limiting factor for the onset of growth in the valley,
we expect that soil moisture should also not constrain the initiation of growth at
higher elevations, considering that precipitation increases with elevation in regions
affected by the Eastern Asian monsoons (Lu et al., 2007). In fact, limited monitored
data indicate that annual precipitation during 2013 and 2014 at the higher elevation
site where our samples were taken was on average 48% higher than at the Jingyuan
meteorological station (data not published).

Reliability of the xylem phenological data was based on the significant
correlations between the simulated and actual tree-ring width chronology during the
past 60 years. Consistent variability was also found with the modeled SOS and EOS
in the Qilian Mountains, northwestern China (Zhang et al, 2016). We further
compared our simulation with available monitored xylogenesis data in the study
region. By using the micro-coring method, Zeng et al. (2018) monitored Chinese pine
xylogenesis in the two years 2013 and 2014. Six monitored trees had an average age
of 49 + 10 (mean =+ standard deviation) yr and three trees had old ages of 286 + 16 yr.
Cambial activity in 2013 occurred in DOY 111-141 in their two age-classified pines,
termination was detected in DOY 207-214. In 2014, the two dates were DOY 142-
147 and DOY 218-224, respectively. Considering that our simulation ended in the
year 2010, we used daily climate data for the two years 2013 and 2014 and performed
the modelling with the estimated parameters in the calibration period. Results showed
that the corresponding SOS and EOS were DOY 120-132 and 262-264, respectively.
Similar SOS was detected with their monitored data, but with an EOS difference of
almost 40 days. The large difference between the monitored (9 trees) and our
modelling (110 trees) tree population could explain such results.

During the past 60 years, the advancement of the starting dates of growth was
probably induced by the warming trend of winter temperature. The change rate of 2.3
d/decade is in agreement with results conducted on the Tibetan Plateau (2.8 d/ decade)
(Yang et al., 2017). In contrast, no pattern was observed for the ending dates of
growth because of weak changes of June—September temperature. However, a
significant delay of the termination of growth was found on the Tibetan Plateau (Yang
et al., 2017). More interestingly, the significant warming over 1981-2010 may have
resulted in a reduced effect of previous winter temperatures (previous December to
January) on the initiation of growth after 1980. Furthermore, because of the
significant cooling trend of June—September temperatures during 1951-1980,
termination of the growing season was significantly advanced. However, the ending
dates did not show significant delaying trend although significant warming had
occurred during 1981-2010. Moreover, as indicated by the sensitivity test, the slopes
of starting and ending dates of growth were significantly different under cooling and
warming scenarios. We herein propose that xylem phenology in our study region is
more sensitive to cooling rather than to warming. Consistent sensitive results were
also detected by a three-year reciprocal translocation experiment on the Tibetan
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Plateau, which showed that the first flowering date of early spring flowering plants
was four times less sensitive to warming than to cooling (Wang et al., 2014). The
asymmetric response of plant phenological series to temperature was mostly
explained by the plastic and adaptive responses of phenophases to temperature change
gradients (Meng et al., 2016). Cambial activity starts when temperature exceeds a
critical value (Begum et al., 2013; Li et al., 2013, 2017; Rossi et al., 2008). Monitored
results showed that an average value of 4-5 °C of the minimum daily mean
temperature 1s needed for xylogenesis in conifers in Europe and Canada (Rossi et al.,
2008). As far as we know, however, there are no available monitored data to confirm
this conclusion near our study site. Localized heating and cooling experiments on the
stem, as conducted by Gricar et al. (2006, 2007), are needed to provide direct
evidence of cambial sensitivity to temperature change in the future.

As predicted by the Earth system models participating in the Coupled Model
Intercomparison Project Phase 5 (CMIPS), temperature near the study region will
increase by 2°C and precipitation will increase by 30% under the scenario of
Representative Concentration Pathway (RCP) 2.6 until the end of this century. Herein,
this scenario describes an all-out effort to limit global warming to below 2°C, with
emissions decreasing sharply after 2020 until being zero from 2080 onward. Under
such climate change scenario, the starting dates of growth would advance by 8.9 days,
while the ending dates of growth would delay by 10.4 days, compared to the average
during the period 1952-2010. Such warm and wet conditions could definitely benefit
forest production, which may increase wood formation at our study site by 19%.
Under RCP 8.5 scenario, a business-as-usual scenario with increasing greenhouse gas
emissions over time, temperature and precipitation will increase by 4°C and 70%,
respectively. Thus, wood formation in our semi-arid study region might increase by
up to 34% in the next century. However, such simplified linear relationships between
wood formation and climatic data may be misleading since extreme conditions were
not considered during our model calibration procedure. Thus, in sifu experiments and
monitoring research are absolutely required in the next step. Since all results
presented here were limited by the mechanisms and parameter settings of the model
itself, caution should be paid against any over-interpretation. Nevertheless, the
presented quantified response of wood production to different climate change
scenarios provides a theoretical framework for ecological research related to forest
ecosystems, its vulnerability to climate change, and to possible adaptation.

Conclusions

In this study, we simulated and predicted the response of wood formation to climate
change by the process-based Vaganov-Shashkin model in semi-arid north central
China. Our two hypotheses are confirmed by the results, which revealed that during
the period 1952-2010, tree stem radial growth rate was mostly influenced by soil
moisture, while xylem phenology (i.e. starting and ending dates of growth) was driven
by temperature. The onset of growth significantly advanced, corresponding to a
warming trend in winter temperature. In contrast, the linear trend of the ending dates
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of growth was not significant. Both the starting and ending dates of growth were more
sensitive to climate cooling, compared to the warming scenario. We provide
quantitative estimates of wood production variability under different climatic change
scenarios that may occur in the future. Our study therefore bears the potential to
improve and to test tree growth related forest dynamic models. In a next step, long-
term (more than 10 years) monitoring or in sifu data are expected to validate the
modeling results. Similar studies based on other tree ecophysiological models are
needed to obtain a consistent picture of forest response to climate change in complex
mountain environments.
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Table and Figure captions

Table 1 Tree-ring parameters used in this study.
Table 2 Statistical results for the model performance during the two separated
calibration (1952-1984) and verification (1985-2010) periods.

Fig.1 Comparison between the actual (black straight line) and simulated (gray dash-
dotted line) tree-ring width series during the past 60 years. Both series were
standardized for direct comparison.

Fig. 2 Simulated integral growth rate (Gr) and mean relative growth rates due to soil
moisture (GrW), temperature (GrT) and solar irradiance (GrE) averaged over the
period 1952-2010. Standard deviations are shown as colored bars.

Fig. 3 Variability of integral growth rate (Gr) under different climate change
scenarios. Raw data is the Gr under current climate conditions. Note that in (a) and (b)
we just showed the limited climate change scenarios for visual comparison.

Fig. 4 Variability of wood production under different climate change scenarios
compared to the measured ring width under current climate conditions. Positive and
negative values indicate stimulation and inhibition of wood formation, respectively.
Fig. 5 Characteristics of the simulated starting (a) and ending dates (b) of the growing
season in the study region. The linear trends as well as the respective statistical results
during the three periods 1952—-1980 (blue dashed line), 1981-2010 (orange dashed
line) and 19522010 (black dash-dotted line) are shown.

Fig. 6 Sensitivity of xylem phenology to climatic data tested by statistical bootstrap
correlations calculated from previous August to current September for the three
periods 19522010 (black bars), 1952-1980 (blue bars), and 1981-2010 (red bars).
Significant correlations are marked with filled histograms (p < 0.05). The months
from August to December of the previous yeas are marked with lower case letters on
the x-axis.

Fig. 7 Variability of xylem phenology under different climate change scenarios. Olive
dots denote the starting dates of growth (SOS), while the red dots indicate the ending
dates of growth (EOS). The left and right panels are the scenarios under the change in
precipitation and temperature data, respectively. The black triangle is the average
xylem phenological data during 1952-2010. Significant linear trends are shown after
changed temperature data. “+” means increase, “— indicates decrease, and O denotes
no change.
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Table 1 Tree-ring parameters used in this study.

Parameter  Description (Units) Value
Tiin Minimum temperature for tree growth (°C) 7.7
Topt, Lower end of range of optimal temperatures (°C) 12.5
Topt, Upper end of range of optimal temperatures (°C) 24.0
Tiax Maximum temperature for tree growth (°C) 310
Wonin Minimum soil moisture for tree growth, relative to saturated soil (v/vs) 0.01
Wopt Lower end of range of optimal soil moistures (v/vs) 0.22
Wopt, Upper end of range of optimal soil moisture (v/vs) 0.31
Winax Maximum soil moisture for tree growth (v/vs) 0.42
Wo Initial soil moisture (v/vs) 0.08
Wy Minimum soil moisture (wilting point, v/vs) 0.04
Thee Sum of temperature to start growth (°C) 40
Prax Maximum daily precipitation for saturated soil (mm/day) 20
K Fraction of precipitation penetrating soil (not caught by crown) (rel. unit) 0.36
K, First coefficient for calculation of transpiration (imm/day) 0.06
Ks Second coefficient for calculation of transpiration (mm/day) 0.12
\A Critical growth rate 0.04

Table 2 Statistical results for the model performance during the two separated calibration
(1952-1984) and verification (1985-2010) periods.

Period R RMSE RE R RMSE!
1952-1984 0.48 0.28 0.03 0.50 0.39
19852010 0.57 0.29 0.23 0.62 0.33

R: correlation coefficient; RMSE: root mean squared error; RE: reduction-of-error. The superscript -1
indicates that the value is calculated from their first-order difference series.



