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abstract

Two-dimensional flow around a semi-circular profile at the zero angle of attack and at Re = 50000 on the self-oscillatory period is extensively studied by the URANS method involving
the standard semi-empirical SST turbulence models, the SST turbulence model with the correction for streamline curvature modified within the Rodi-Leschziner-Isaev and Smirnov-
Menter approaches, as well as involving Hanjalic’s four-parameter eddy viscosity elliptic relaxation model and its analog - eddy viscosity elliptic blending model proposed in the present
work. This has been done with the use of different-structure grids (multiblock with structured overlapping and unstructured composite). Different numerical approximation methods
realized in six codes (VP2/3, SigmaFlow, Fluent, CFX, OpenFOAM, and StarCCM+) are used. An under-estimation (up to 30%) of time-averaged integral aerodynamic loads is revealed
by means of the stan-dard near-wall SST model. This is explained by the high vortex viscosity production in the profile wake. Wind tunnel tests show that the location of cutoff washers
on the semi-circular profile provides a quasi-two-dimensional flow around it and allows applying measurement data to verify two-dimensional tur-bulent flow. The best agreement of
experimental results and numerical predictions when comparing the Strouhal number and time-averaged surface pressure coefficient distributions is achieved using both the modified
SST model with the correction for streamline curvature and the modified eddy viscosity elliptic blending model. When the SST model with the correction for streamline curvature,
modified within the Rodi-Leschziner-Isaev, Smirnov-Menter and Durbin approaches, is used, all the above codes yield close predictions of a vertical aerodynamic load on the oscillation
period.

1. Introduction

Interest in turbulent flow around a semi-circular profile is as-sociated with
the features of its aerodynamic characteristics at the zero angle of attack α=0.
At this position of the profile, the time-averaged lift coefficient Cy takes peak
negative values of the order of −1, and small deviations of α in the direction
of increasing or decreasing its values sharply increase Су up to positive values
[1,2].

The reason for such a behavior is explained by transforming the Су fluctuation
period-averaged pattern of vortex flow around the pro-file [3]. On the other
hand, the semi-circular profile can be consid-ered as a thick (50% of the chord)
profile. In this respect, interest in this profile is to find perspective
aerodynamic shapes of integrated vehicles with flow control by vortex cells
[4–6]. The present work applies the data on flow with periodic vortex
structures near a cir-cular cylinder at Re = 50000 [7–9] and on turbulent flow
around a thin (12% of the chord) NACA0012 airfoil at small, moderate, and
large angles of attack [10].
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Nomenclature 

a blending function 

A i , C i , c i , C μ, c μ constants of turbulence models 

C x drag coefficient 

C y lift coefficient 

C c semi-empirical constant (0.02) 

C p pressure coefficient 

Err error 

f c correction function of eddy viscosity 

f re-distributed function in the turbulence 

model 

F characteristic pressure fluctuation frequency 

fr friction 

k energy of turbulent fluctuations 

L chord of the semi-circular profile 

L t space scale of turbulence 

l turbulence scale 

p pressure 

P turbulence generation 

PSD pulsation spectral density 

R rounding radius of edges 

R x longitudinal force 

R y vertical force 

Re Reynolds number 

Ri t turbulent Richardson number 

S strain rate tensor modulus 

S ij strain rate tensor components 

Sh Strouhal number 

t time 

Tu turbulence intensity 

T t time scale of turbulence 

U undisturbed flow velocity 

u,v longitudinal and transverse Cartesian veloc- 

ity components 

u ′ 
i 
u ′ 

j 
Reynolds stress tensor components 

υ2 fluctuation energy of velocity components 

normal to the wall 

x, y Cartesian coordinates 

X cross-diffusion term 

y + dimensionless distance from the wall to the 

center of a near-wall cell 

α angle of attack 

δij Kronecker symbol 

ε dissipation rate of turbulence kinetic energy 

ε22 , φ22 dissipation rate and re-distributed term of 

Reynolds stress tensor components, respec- 

tively 

ζ normalized energy of fluctuations of velocity 

components normal to the wall 

μ viscosity coefficient 

ρ air density 

ω specific (per unit k ) turbulence dissipation 

rate 


 vorticity modulus 

Subscripts 

max, min maximum and minimum values 

t turbulent values 
∗ time kept from the start of the self-oscillatory cy- 

cle 

∞ incoming flow parameters 
The current work presents the results of testing and compar-

tive analysis of the computational technology for solution of un-

teady Reynolds-averaged Navier-Stokes (URANS) equations applied

or simulation of vortex and separated flows in multiply connected

nd many-scale computational domains by the example of low-

elocity air flow around a semi-circular profile at the zero angle

f attack and Re = 50 0 0 0. 

The choice of this example as a test task is due to the above-

entioned anomalous С у behavior of such a profile at α= 0, since

umerical simulation errors of intense vortex flow in this case ap-

ear to be most noticeable. These errors mainly depend on the

hosen computational grids and the used semi-empirical turbu-

ence models. Computational accuracy and efficiency are also af-

ected by discretization methods, solution methods of algebraic

quations, and their implementation in software – computational

odes. All the above factors are reflected in the present testing

tudy. Numerical predictions are verified by their comparison to

he results of a wind tunnel special experiment. 

As known, grids meant for solving boundary-value problems

f fluid dynamics are divided into structured grids with ordered

etragonal (two-dimensional case) cells and unstructured grids

ith triangular, hexagonal cells, etc. [11] . For viscous fluid flows

ith high gradients (with boundary and shear layers) at high

eynolds numbers (Re), the characteristic zone scales are inversely

roportional to Re. To correctly resolve them, mesh nodes should

e condensed and computational cell sizes should be substantially

ecreased. To resolve vortex streets in the body wake, cells should

lso be refined. Fully unstructured grids are poorly adapted to con-

ense mesh nodes in the vicinity of walls; the computational accu-

acy of these grids according to high-order schemes is lower than

hat according to structured grids. At the same time, it should be

oted that some interesting tasks of aeromechanics are character-

zed by the presence of multiply connected computational sub-

omains, for example, flow around the profile with vortex cells

4,5] , with trailing-edge flaps, and leading-edge flaps [12,13] , flow

nteractions with a cylinder in a perforated housing when air from

 high-pressure zone flows into a low-pressure zone in the wake

14] . In the case of complex flow boundary configurations, the use

f single-block (with one matrix) structured grids runs into dif-

culties; therefore, multiblock overlapping grids have been long

sed. Dependent variables on such grids should be interpolated in

ear-boundary cells. This, as a rule, leads to the violation of mass

nd momentum conservation. This fact, as well as the presence of

oarse cells at the periphery of fragment-composed grids led to

he fact that in 1996, “DRAGON”-type grids [12] , where overlapping

ones of grids were discarded and overlapping grids were replaced

y unstructured ones, were proposed for tasks of flow around a

omposite profile. 

Despite the obvious promise of the concept, the above

DRAGON” -type grids were developed and used in applied soft-

are. At the same time, the development of the multiblock com-

utational technology (MCT) in the VP2/3 code (velocity-pressure,

D/3D) united the application of overlapping grids for multiply

onnected computational domains and the introduction of addi-

ional difference-scale grids for boundary and shear layers, vortex

treets, and other physical phenomena of tasks at hand [15] . So in

16] , where the task on circulation flow in a cavity with a mov-

ble cover was solved on single- and multiblock overlapping grids,

he solution error was assessed using the linear interpolation in

ear-boundary cells of fragment-composed grids and its applica-

ility was shown. In the present work, the predictions with the

se of different-type grids are combined with the implication of

ifferent methods and applied software. 

Semi-empirical constants in the turbulence models used for

RANS closure as a rule are calibrated according to the measure-

ent data for near-wall flows. The success of most models is de-
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ermined through their use for low-intense turbulent vortex and

eparated flows tasks. However, it has long been known [17] that

t is necessary to correct the two-parameter dissipative model with

he consideration of the streamline curvature influence on turbu-

ence characteristics when calculating flows with intense large-

cale trapped vortices. In recent decades, Menter’s shear stress

ransport turbulence model (SST model) has been widely used for

imulation of separated flows. It is included into all known com-

ercial and open (open access code) applied software. Of the two

ST models proposed by Menter in 1993 [18] and by Menter et al.

n 2003 [19] software uses the last one. To predict eddy viscos-

ty, the first model applies the absolute vorticity and the second –

he strain rate tensor modulus. Distinction between these models

s significant and is seen in predictions of large-scale vortices. It

s known that in vortex cores, vorticity is almost constant (Batch-

lor’s model [20] ). Therefore, when the first model is used, vor-

ex viscosity does not increase in the cores. At the same time, as

onfirmed by numerous tests [21,22] , the use of the SST model

19] yields a false eddy viscosity increase in the core of large-

cale vortices and a very high eddy viscosity level as a whole.

o avoid a non-physical eddy viscosity increase, this became pos-

ible within the generalized Rodi-Leschziner-Isaev (RLI) approach

15] with the correction for eddy viscosity computed by the SST

odel [19] with the correction function of the turbulent Richard-

on number when the value of Isaev-Kharchenko-Usachov’s semi-

mpirical constant С c = 0.02 is taken instead of 0.1 [17] in the cor-

ection for the two-parameter dissipative model. The correction for

treamline curvature within the RLI approach is introduced into

P2/3 and SigmaFlow codes. The current work also tests the SST

odel [19] modified by Smirnov and Menter [23] on the basis

f the ideas of Spalart and Shur [24] . This SST model [19] with

he correction for streamline curvature within the Smirnov-Menter

SM) approach is used in Fluent, CFX, and VP2/3 codes. And, at

ast, when the StarCCM + code is applied, Durbin’s correction [25] is

dded to the SST model. 

The standard SST model [19] is verified by means VP2/3, Sig-

aFlow, Fluent, CFX, OpenFOAM, and StarCCM + codes used for

omputation of turbulent flow around a semi-circular profile at

= 0 о and Re = 50 0 0 0. The versions of the SST model with the

treamline curvature correction, the four-parameter ζ–f model

26] , and the four-parameter ζ–a model, developed on the ba-

is of works [26–29] , were also tested in combination with the

se of different-topology grids and various computational meth-
ig. 1. Photograph of the experimental model in the vicinity of the measuring section ( a )

quipped with the semi-circular cylinder having two cutoff washers shaped as discs to the

o colour in this figure legend, the reader is referred to the web version of this article.) 
ds when solving this task. The numerical predictions by means

f these computational models are compared with the results of a

ind tunnel special experiment to define local and integral aero-

ynamic loads on the semi-circular profile. 

. Physical model 

As mentioned above, a semi-circular cylinder can be considered

s a thick (50% of the chord) airfoil. In our case, flow around such

n airfoil at zero angle of attack is taken as a basic example to test

omputational technologies of two-dimensional numerical simula- 

ion of turbulent flows. At that, it is important that in experiment,

ppropriate flow around a semi-circular cylinder should also be

uasi-two-dimensional. 

Work [1] was concerned with the experimental study of flow

round the semi-circular cylinder at different angles of attack α,

ncluding at α = 0, and at Re ≥ 670 0 0. Time-averaged distributions

f the pressure coefficient С р over the contour of the cross section

f the semi-circular cylinder were obtained and integral aerody-

amic forces were assessed. However work [1] has no data, show-

ng whether flow around the semi-circular cylinder was quasi-two-

imensional or whether it was substantially three-dimensional. In

he present study, new experimental data on flow around the

emi-circular cylinder at zero angle of attack were obtained using

pecial means to provide quasi-two-dimensional flow. 

Fig. 1 shows the experimental design for measurement of pres-

ure distributions over the cross section of the semi-circular cylin-

er in the uniform flow at zero angle of attack. Measurements

ere made in the wind tunnel with the cross section shaped as a

egular octagon with a side of 320 mm. The diameter of the semi-

ircular cylinder was L = | AB | = 50 mm. 28 drain ports (with an

nner diameter of each drain port equal to 0.6 mm) were located

ver the middle cross section to determine the pressure coefficient

 p . Points i = 2–15 were equidistant on the arc АB with an angular

pacing of π /15 radians. Points = 16–29 were placed on the straight

ection of AB with a spacing of L/ 13. Thin cutoff washers shaped as

iscs with a diameter 130 mm ( Fig. 1 , с ) were located at a distance

f d /2 to the left and to the right of the measuring section. They

ere intended to prevent the information exchange in terms of the

emi-circular cylinder length. 

The mean air flow velocity in the wind tunnel was U = 19.2 m/s.

his corresponded to the Reynolds number Re ( = LU / ν) = 640 0 0

here ν is the kinematic viscosity coefficient. The turbulence in-
; numbered drain ports ( b ); cross section of the testing section of the wind tunnel 

 left and the right of the measuring section ( c ). (For interpretation of the references 
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. Numerical simulation problem. Turbulence models 

The numerical study of turbulent incompressible flow around

 semi-circular profile is performed with the consideration of a

light rounding of leading A and trailing B edges ( Fig. 1 ). The chord

ength L of the semi-circular profile is taken as the characteristic

ize so that the remaining linear sizes are expressed in terms of

he chord. The rounding radius R of the profile edges is varied from

 to 0.005. The angle of attack is assigned as equal to zero. Flow

arameters at the computational domain inlet are taken as scales

or nondimensionalization. The Reynolds number is assumed to be

qual to 50 0 0 0. 

As in [3,22] , to solve the problem on two-dimensional un-

teady turbulent incompressible viscous fluid flow around the

emi-circular profile, the mathematical model based on the system

f the unsteady Reynolds-averaged Navier-Stokes (URANS) equa-

ions is used. 

To close the URANS system, several semi-empirical turbulence

odels of different complexity were used; most simple among

hem was the shear stress transport (SST) model that had found

ide use for typical near-wall flows, including separated flows

18,19] . Menter’s k–ω model generalizes two turbulence models:

he k–ε model of Launder and Spalding for shear flow regions

ar from the wall and the k–ω model of Saffman and Wilcox

or the near-wall region. In addition, the ideas implemented in

he turbulence model of Johnson and King were adopted to con-

truct the zonal SST model. As previously mentioned, to determine

ddy viscosity, the old SST model [18] uses the modulus of vor-

icity Ώ, whereas the new SST model [19] , like most differential-

ype semi-empirical models, includes the modulus of the tensor of

train rates S into the expression for eddy viscosity. It is of im-

ortance to emphasize that the semi-empirical models are mainly

alidated on the basis of near-wall flow results; the necessity then

ppears to validate them using separated flow data. As noted in

20] , the Rodi-Leschziner approach with the eddy viscosity correc-

ion, widely used in the late 80 s of the last century [30] in the

igh-Reynolds version of the two-parameter dissipation turbulence

odel of Launder and Spalding, says that eddy viscosity is affected

y the correction function f c = 1/(1 + C c × Ri t ); in this case, the con-

tant С c = 0.57 is defined analytically when computing turbulent

nnular and twin parallel jets [31] and the constraint is set on the

roduct f c × C μ: 0.02 < f c × C μ< 0.15 (in the standard k–ε model

30] , the semi-empirical constant C μ= 0.09 in the eddy viscosity

xpression). S. Isaev generalized the Rody-Leschziner approach to

enter’s model [19] . Kharchenko, Usachov, and Isaev chosen the

onstant C c = 0.02 [20] from the condition of the best agreement

etween numerical predictions and experimental data for numer-

us examples of separated flows. Not so long ago, Smirnov and

enter [23] proposed one more correction (SM correction) of the

ST model [19] by extending the Shur-Spalart correction in the 

ddy-viscosity model of Spalart and Allmaras [24] to Menter’s

wo-parameter model. Durbin’s correction introduced into the SST

odel [19] should be mentioned. 

The near-wall conditions for SST models are formulated from

he condition that the normal derivative to the wall is equal to

ero for turbulence energy and the specific dissipation rate of tur-

ulence energy is defined according to [32] . 

The two four-parameter ζ–f and ζ–a models are considered

s semi-empirical models of high complexity. As previously men-

ioned, the ζ–f model was developed by Hanjali ́c [26] and is fairly

ell known. Therefore, the recently developed ζ–a model will be

ore detailed . It was built by reducing the Reynolds stress trans-

ort model with elliptic blending [27,28] to the four-parameter

ddy-viscosity model. In fact, this model is the version of Durbin’s

riginal model [33] based on the following eddy-viscosity depen-
ence valid in the vicinity of the wall 

t = ρC μυ2 T t , 

here υ2 ≡ u ′ 2 u ′ 2 is the Reynolds stress tensor component for ve-

ocity fluctuations normal to the wall; subscript 2 stands for the

irection normal to the wall; the constant C μ= 0.21; T t is the tur-

ulence time scale; ρ is the medium density. 

From the system of the equations of the Reynolds stress trans-

ort model we selected one transport equation of the Reynolds

tress tensor component for velocity fluctuations normal to the

all: 

D υ2 

Dt 
= D 22 + ρ( φ22 − ε 22 ) . (3.1) 

The right hand-side of Eq. (3.1) sequentially contains the diffu-

ion term, the re-distribution term, which represents a correlation

etween pressure and strain rate tensor, and the dissipation rate

erm. In the near-wall layer, the production of the Reynolds stress

ensor component normal to the wall is absent; to model the dif-

usion term the gradient hypothesis is adopted: 

 22 = ∇ ·
[
( μ + μt ) ∇ υ2 

]
. 

By analogy with the ζ–f model [26] , we pass to a dimensionless

ariable ζ = υ2 /k 

Dζ

Dt 
= 

1 

k 

D υ2 

Dt 
− υ2 

k 2 
Dk 

Dt 
, 

here k is the turbulence kinetic energy. Using the transport equa-

ion of turbulence kinetic energy 

Dk 

Dt 
= ∇ ·

[ (
μ + 

μt 

σk 

)
∇k 

] 
+ P − ρε (3.2)

nd Eq. (3.1) , the transport equation for ζ assumes the form: 

Dζ

Dt 
= ∇ ·

[ (
μ + 

μt 

σk 

)
∇ζ

] 
+ ρ

1 

k 
( φ22 − ε 22 ) −

ζ

k 
( P − ρε ) + X, 

(3.3) 

here the cross-diffusion term can be written as: 

 = 

2 

T t ε 

(
μ + 

μt 

σk 

)
( ∇ ζ · ∇ k ) . (3.3 а )

Here ε is the isotropic dissipation rate of turbulence kinetic en-

rgy, P is the turbulence kinetic energy production calculated as

 = μt 2 S i j S i j , and S ij is the strain rate tensor. 

Having re-arranged the variables in Eq. (3.3 ) and having intro-

uced the notation 

f ≡ 1 

k 
( φ22 − ε 22 + εζ ) , 

e have the transport equation in the following form: 

Dζ

Dt 
= ∇ ·

[ (
μ + 

μt 

σk 

)
∇ζ

] 
+ ρ f − ζ

k 
P + X. (3.4)

The similar equation, but with the discarded cross-diffusion

erm is formulated in the ζ–f model [26] . According to the initial

odel based on the blending function [28] , the function f in the

ransport equation for ζ is calculated using the blending function

 : 

f = 

(
1 − a 3 

)
f w 

+ a 3 f h , (3.5) 

here the value of the function f near the wall is 

f w 

= 

1 

k 
( φw 

22 − ε w 

22 ) + 

ε 

k 
ζ = −6 

ε 

k 
ζ + 

ε 

k 
ζ = −5 

ε 

k 
ζ (3.6)

nd the value of the function f far from the wall is 

f h = 

1 

k 

(
φh 

22 − ε h 22 

)
+ 

ε 

k 
ζ = −ε 

k 

(
C 1 f − 1 + C 2 f 

P 

ρε 

)(
ζ − 2 

3 

)
. (3.7) 
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The model constants are taken from the basic second-moment

model [28] and are based on the model by Speziale, Sarkar and

Gatski (SSG) [29] : σk = 1 . 0 , C 1 f = 1 . 7 , C 2 f = 0 . 9 . 

The equation for the elliptic blending function a is formulated

as follows: 

∇ 

2 a + 

1 

L 2 t 

( 1 − a ) = 0 , (3.8)

where the scale L t is calculated from the realizability conditions

and is bounded from below by Kolmogorov’s length scale: 

L t = C L max 

[ 

min 

( 

k 3 / 2 

ε 
, 

k 1 / 2 

C μ
√ 

6 S i j S i j ζ

) 

, c η

(
μ3 

ρ3 ε 

)1 / 4 
] 

, 

c η = 80 , C L = 0 . 133 (3.9)

The realizability conditions 2 k ≥ u ′ i 2 ≥ 0 [26] are used for a

relationship between the turbulent stress tensor and the strain

rate tensor expressed in the Boussinesq hypothesis as ρu ′ i u ′ j =
−2 μt S i j + 2 / 3 k δi j . As a result, the restrictions on the turbulence

scales of length ( 3.9 ) and time ( 3.11 ) are formulated. 

The transport equation for the dissipation rate of turbulence ki-

netic energy is taken from the basic model: 

ρ
Dε 

Dt 
= ∇ ·

[ (
μ + 

μt 

σε 

)
∇ε 

] 
+ 

C ε1 P − C ε2 ρε 

T t 
, (3.10)

where the model constants are: 

C ′ ε1 = C ε1 

(
1 + A 2 

(
1 − a 3 

) P 

ρε 

)
, A 2 = 0 . 065 , σε = 1 . 3 , 

C ε2 = 1 . 83 , C 1 f = 1 . 44 

and the turbulence time scale with the imposed realizability con-

ditions are: 

T t = max 

[ 

min 

( 

k 

ε 
, 

0 . 6 

C μ
√ 

6 S i j S i j ζ

) 

, c T 

(
μ

ρε 

)1 / 2 

] 

. (3.11)

To determine the production coefficient in the near-wall layer,

it is possible to use the alternative formula [28] : 

 

′ 
ε1 = C ε1 

( 

1 + A 1 

(
1 − a 3 

) 1 √ 

ζ

) 

, A 1 = 0 . 03 

As in all models of this family, turbulent viscosity is determined

by the formula: 

μt = ρC μkζT t , C μ = 0 . 21 (3.12)

Wall boundary conditions when integrating up to the wall are

set as follows: 

k = 0 , ε = 2 μk / ρy 2 , ζ = 0 , a = 0 

The model can be used with arbitrary wall functions. Here, as

in the case of the turbulence kinetic energy, for the dimension-

less quantity ζ the condition of no diffusion flux through the wall:

∂ζ / ∂n = 0 can be used. 

The wall boundary condition for the elliptic blending function

a is determined from the calculations of the developed turbulent

channel flow and is the function of the dimensionless distance, y + 
1 

,

from the wall to the first near-wall node: 

a W 

= 1 − exp 

(
− y + 

1 

A 

+ 

)
, A 

+ ∼ 18 ., (3.13)

In the viscous sublayer, the value of a tends to zero. 

Finally, the model is described by a set of the differential Eqs.

(3.2, 3.4, 3.8, 3.10 ) and by the expressions for turbulence quantities

(3.9, 3.11, 3.12). 

At present, a great number of models based on Durbin’s model,

including the models with the strategy of the elliptic blending
unction, have been developed. The most comprehensive analysis

f the models is presented in [34] . The result strongly depends on

he model version and can be substantially different from experi-

ental data. The predictive efficiency of models is mainly affected

y model details, chosen constants, and boundary conditions not

elating directly to the basic concept of Durbin’s model. 

Undisturbed flow parameters are assigned at the computational

omain inlet. Turbulence characteristics are determined in the

ame manner as in [3,10,15,22] for the conditions of wind tun-

el experiments. So, the turbulence energy k ∞ 

at the domain in-

et is assigned in terms of the incoming flow turbulence intensity

u ∞ 

= 1.5% and the turbulence scale l ∞ 

is chosen from the condi-

ion when eddy viscosity is close to physical one. 

Outflow boundary conditions (conditions for continuation of so-

ution) are set at the computational domain outlet, whereas no-slip

onditions – at the body surface. Near the wall, y + does not exceed

. The state of collision of a uniform flow with an abruptly decel-

rated thick body is taken as the initial condition. 

. CFD codes. Computation methodology 

Based on solving the unsteady Reynolds-averaged Navier-Stokes

ith the use of semi-empirical models, applied software became

 powerful tool to predict flow parameters and turbulence charac-

eristics. In the present study, by the example of solving the test

wo-dimensional task for incompressible viscous turbulent fluid

ow around a semi-circular profile the commercial industrial Flu-

nt [35] , CFX [36] , StarCCM + [37] , and OpenFOAM codes [38] , as

ell as research VP2/3 [15] and SigmaFlow [39] codes were com-

ared. 

All computational algorithms realized in these codes are based

n both the concept of physical-operator splitting and grid meth-

ds for solution of the governing equations [11,15] . The use of

his concept allows the system of partial differential equations to

e divided into blocks containing momentum equations in natural

ariables (including the Cartesian velocity components for incom-

ressible viscous fluid flow), pressure correction equation (SIM-

LEC [40,41] ) replacing continuity equation, and equations for their

losure (from the selected turbulence model) [15] . 

Thus, the system of the unsteady-state equations transformed

nto discrete form is being solved block by block at each time step

n the course of the global iteration process (about 10–20 itera-

ions), when for one iteration in the course of solving the mo-

entum equations, several (about 10–15) iterations are being per-

ormed in the pressure correction block and about 4–6 iterations –

n the turbulence block. 

The equations are either immediately written in discrete form

Fluent, CFX, StarCCM + , and OpenFOAM codes [41] ), or are prelim-

narily linearized (SigmaFlow and VP2/3 codes [15,42] ). 

In the present study, the VP2/3 code is selected as the basic one

nd used for testing computations (together with other codes). The

pecific features of the used algorithm for this code are: (1) the

ressure correction procedure SIMPLEC [40] based on the concept

f physical-operator splitting together with the generalized Rhie-

how monotone approximation for a given centered computational

lock [43,44] ; (2) the approximation of the convective terms in

he explicit hand-side of the momentum equations by the one-

imensional analog of Leonard’s quadratic upwind scheme (QUICK)

45] to reduce the influence of numerical diffusion specific for the

onsidered type of separated flows and by Van Leer’s scheme [46]

or the equations for turbulence characteristics; (3) the representa-

ion of the convective terms in the implicit hand-side of the mo-

entum equations by means of the upwind scheme (QUICK) with

ne-sided differences, which allows the stability of the computa-

ional procedure to be improved; 4) the application of the methods

ith preconditioners for solution of difference equations [47] . 



                 

Table 2 

Used codes, temporal and spatial discretization schemes, solvers. 

Code Equation form: 

incremental (delta) 

form/usual (delta) form 

Methods for global 

iteration 

Discretization of 

convective terms 

Time discretization 

scheme 

Solver for algebraic equations 

VP2/3 Delta form [14,44] SIMPLEC [42] QUICK- scheme for 

momentum 

equations and 

TVD-scheme with 

Van Leer limiter for 

turbulence equations 

[47,48] 

Second Order Upwind 

Euler (SOUE) scheme 

[50] 

Fixed-point iteration with AMG 

preconditioner for pressure 

correction and ILU(0) 

preconditioner for another 

variables [49] 

SigmaFlow Delta form SIMPLEC QUICK- scheme for 

momentum 

equations and UMIST 

TVD-scheme for 

turbulence equations 

SOUE scheme BiCGSTAB with AMG 

preconditioner from 

Demidov’s library (amgcl) for 

pressure corrector and DILU 

for another variables 

Fluent Usual form [10] SIMPLEC Face pressure 

is obtained from the 

linear law 

QUICK-scheme with 

min/max limiter 

SOUE scheme AMG for all variables 

CFX Usual form Coupled [52] TVD-scheme with 

limiter [53] 

SOUE scheme AMG for all variables 

Star CCM + Usual form PISO [10] TVD-scheme with 

min/max limiter [51] 

Euler first-order 

scheme 

AMG for all variables. For 

pressure correction, the 

preconditioned conjugate 

gradient method is used [52] 

Open FOAM Usual form PISO [43] TVD-scheme with Van 

Leer limiter [48] 

Euler first-order 

equation 

AMG for pressure and 

biconjugate gradient solver 

(BiCG) with ILU 

preconditioner for another 

variables [49] 
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The use of the generalized Rhie-Chow approach [44] permitted

ne to avoid difficulties in calculating unsteady flows. The flows

alculated by means of the generalized Rhie-Chow monotone ap-

roximation are used not only in the pressure correction equation,

ut are remembered and taken to calculate the convective terms

f all transport equations (turbulence). The numerical procedure

s thus supplemented by one more stage – calculation of flows at

ell edges. It is performed after solving the momentum equation

efore the pressure correction stage. After the pressure correction

as been determined, not only velocities in the cell centers, but

lso normal velocity components at the cell edges, i.e., mass flow

alues, are corrected. To determine a normal velocity component

alue at a cell edge, not simple averaging of velocity values, as

n [42] , but averaging of velocity values expressed from the dis-

rete form of the writing of the momentum equation in adjacent

ells is used. When determining a normal component of a velocity

t a cell edge, it becomes possible to identify components propor-

ional to this velocity at the previous iteration (previous time step),

o assign a velocity dependence on mass forces, and to introduce

nto the velocity definition a local pressure gradient normal com-

onent value calculated only in terms of velocity values in adjacent

ells. As a matter of fact, the generalized Rhie-Chow monotone ap-

roximation in this approach appears automatically with the coef-

cient equal to the relaxation coefficient of the momentum equa-

ion. Since the current flow value at the cell edge contains the pre-

ious iteration (time step) value, the changes in these parameters

o not sharply increase errors. 

The time derivatives in the differential equations are discretized

ccording to Euler’s method [11,15] and Second Order Upwind Eu-

er SOUE-scheme [48] . 

The method for solution of algebraic equations is the BiCGSTAB

reconditioner [47] with the AMG preconditioner from Demidov’s

ibrary (amgl) [49] for pressure correction and the ILU(0) precon-

itioner for another variables. 

The multiblock computational technology (MCT) realized in the

P2/3 code is outlined elsewhere in [14,15] . The essence of this

echnology is to introduce a set of different-scale, tier, and overlap-

ing structured grids matched with possible specific flow regions.
n the two rows of near-boundary cells of each of the overlapping

r overset grids, the parameters are determined at linear interpola-

ion [15,16] in the manner, as done in [13] . In [15] , it is shown that

his approach is equivalent to the application of adaptive unstruc-

ured grids, but its computational resources are substantially less,

.e., it is more efficient. It also provides a proper computational ac-

uracy without refining grids, since it automatically resolves the

ow structure. 

Computation from grid to grid according to MCT at linear in-

erpolation is a source of errors; however, the testing computa-

ions of steady circulation flow in a cavity with a moving cover

16] show that the errors appear to be quite acceptable. Nev-

rtheless, to assess the computational accuracy of unsteady tur-

ulent flows, we performed testing computations of flow around

he semi-circular profile on the composite grids obtained from

he overlapping structured grids by eliminating the overlapping

ones of grids and replacing them by unstructured grids consist-

ng of fragments. The algorithms realized in the VP2/3 code al-

ow one to solve tasks on such unstructured grids having 90%

f structured fine grids. It should be noted that the compos-

te grids are the analogs of “DRAGON”-type grids [12] , but they

erve not so much to describe flows in multiply connected do-

ains as to correctly resolve the flow structure and the phys-

cal processes in the task at hand. Table 2 summarizes the

pecific features of algorithms and computational methods real-

zed in SigmaFlow, VP2/3, Fluent, CFX, StarCCM + , and OpenFOAM

odes. 

. Testing studies 

Testing studies cover a wide range of testing computations of

eriodic incompressible fluid flow around a semi-circular profile at

ero angle of attack. We consider how solutions are affected by

cheme factors, in particular computational grids, time and near-

all steps, numerical discretization schemes of convective and

ime terms of equations, and edge rounding. The MCT accuracy is

ssessed. Various semi-empirical turbulence models are compared,

nd the advantage of the SST model modified within the RLI ap-
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A multiblock grid consists of three fragments: a О-type grid

round the profile ( Fig. 4 , c ) and two Н-type grids, one of which

overs the computational domain outlet, and another additional

rid is meant to resolve in detail a vortex street developing in the

ear and far wakes behind the profile. 

The near-wall step of the O-type grid is equal to 10 −5 . The total

umber of grid cells in the vertical direction to the semi-circular

rofile is 112. The size of the near-wall zone is 0.5. 580 cells are

ocated on the profile. The minimal grid step in the leading near-

dge zone is 2 × 10 −3 and in the trailing one – 10 −3 ( Fig. 4 , d,e ).

he grid step in the middle of the top arch of the profile is 10 −2 .

o match the additional rectangular grid, into which the circular

rid adjacent to the profile is placed, the near-boundary step in

he radial direction is equal to 0.025. Thus, the fragment-composed

-type grid contains 64380 cells, among which are 63220 compu-

ational cells. 

The outer H-type grid around the entire computational domain

xtends from x = −21.5 to x = 51.2 and from y = −31.05 to y = 31.44.

inimal grid steps equal to 0.1 in the both directions are located

n the vicinity of the profile. The maximal step near the right com-

utational domain boundary does not exceed 0.5. The total number

f fragment-composed H-type grid cells is 180873. 

To improve the computational accuracy of the vortex street, the

dditional H-type grid extends from x = −1.5 to x = 21 and from

 = −2.05 to y = 2.44. Minimal grid steps in the both directions are

qual to 0.025. The total number of grid cells is 54634, among

hich are 52326 computational cells. 

The total number of computational cells of the grid is about 300

housands. It is designated as Ho. 

At the edge rounding radius R = 0.003, the near-edge grids

earby are similar in shape and size ( Fig. 4 , f ). The near-wall grid

tep is equal to 10 −5 . The number of cells in the vertical direc-

ion to the grid adjacent to the profile is 112. The size of the

ear-wall zone is 0.5. 856 cells are located on the profile. The

inimal grid step in the leading and trailing near-edge zones

s 4 × 10 −4 . The grid step in the middle of the top arch of the

rofile is 10 −2 . To match the additional rectangular grid, into

hich the circular grid is placed, the near-boundary step in the

adial direction is equal to 0.025. Thus, the fragment-composed

rid contains 95016 cells, among which are 93304 computational

ells. 

The multiblock grid at the edge rounding radius R = 0.003 is

esignated as Нr. 

At the edge rounding radius R = 0.005, the near-edge grids

earby are similar in shape and size ( Fig. 4 , g ). The near-wall grid

tep is equal to 10 −5 . The number of cells in the vertical di-

ection to the grid adjacent to the profile is 112. The near-wall

one size is 0.5. 806 cells are located on the profile. The minimal

tep in the leading and trailing near-wall zones is 5 × 10 −4 .The

rid step in the middle of the top arch of the profile is 10 −2 . To

atch the additional grid, into which the circular grid is placed,

he near-boundary grid step in the radial direction is 0.025. Thus,

he fragment-composed O-type grid contains 89577 cells, among

hich are 87963 computational cells. 

The multiblock grid with the edge rounding radius R = 0.005 is

esignated as Н∗. 

Thus, the number of multiblock H-type grid cells in the two last

ases increases by about 30 thousands and is approx. 330 thousand

ells. 

To analyze the testing computations using Н-type grids meant

o assess the influence of the time approximation of different or-

er, as well as the size change and the grid fragment discretization,

everal rather coarse grids of the same topology as Н-, Нr-, and H 

∗-

rids are considered. 

The near-wall step of the first of such grids designated as Н1 is

oarse and amounts to 10 −4 . 



                 



                 



                 



                 



                 



                 



                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

agreement between numerical predictions and experimental data.

The RLI approach, where the semi-empirical constant С c = 0.02 in-

versely depends on the turbulent Richardson number in the cor-

rection formula for definition of eddy viscosity, appears to be

preferable to the SM approach. A better agreement of the numer-

ical predictions by means of the SST model [19] modified within

the RLI approach, which have been obtained by different codes

(VP2/3 and SigmaFlow) and grids (multiblock and composite), is

also shown. 

The comparison of the SigmaFlow, VP2/3, Fluent, CFX,

StarCCM + , and OpenFOAM codes has revealed a large scatter both

of the numerical predictions of R x ( t 
∗) and R y ( t 

∗), where the time

t ∗ is taken from the start of the self-oscillatory period at mini-

mum load, and of time-averaged C x and C y using the near-wall SST

model [19] . This is done with the use of the standard near-wall

SST model [19] which is one of the basic turbulence models. At

the same time, the use of the modified SST models with the cor-

rection for streamline curvature strongly improved the prediction

of characteristics, in particular the R y ( t 
∗) predictions became much

closer. It appeared that the use of the SST model modified within

the RPL approach and MCT realized in the VP2/3 code yields the

numerical predictions that slightly differ from those obtained on

composite grids. 

The performed comparison of the semi-empirical models of dif-

ferent type (two-parameter SST model modified within the RLI ap-

proach, four-parameter ζ–a and ζ–f turbulence models) showed a

satisfactory agreement of the results obtained on different grids in

different codes (VP2/3 and SigmaFlow). The preferable results were

obtained using both the SST model [19] modified within the RLI

approach and the proposed ζ–a model. 
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