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RESUMO

Este artigo apresenta os resultados da pesquisa de métodos paramétricos e ndo paramétricos de
identificagdo dos modelos tecnoldgicos de operagao de pogos utilizando instalagbes de bombas submersiveis
elétricas. Propbe-se a utilizagdo de uma abordagem hibrida, combinando modelos paramétricos e nao
paramétricos para obter modelos precisos que permitam a previsdo de parametros de desempenho de pogos.
Estudos de métodos de simulagdo sob condicées de efeito de interferéncia de diferentes niveis, que sao
tipicos para canais de sinalizacdo de gerenciamento de dados reais, sistemas de controle e instrumentos de
medigao, foram conduzidos. Os modelos combinados propostos foram construidos com a ajuda da regressao
nao paramétrica de Rosenblatt-Parzen, modelos paramétricos com adaptacdo automatica de paréametros e
redes neurais artificiais. Demonstrou-se que tais modelos combinados possuem possibilidades
generalizadoras essenciais, permitindo a suavizagdo de dados paramétricos e a restauragdo de
dependéncias iniciais com um erro significativamente menor em relagao a interferéncia perturbadora. Os
métodos e modelos desenvolvidos foram implementados para fins de pesquisa no sistema de software, o que
permite uma simulagdo complexa de mudancas nos parametros durante a operagdo do pog¢o usando as
instalagbes de bombas submersiveis elétricas. Para avaliar a significAncia estatistica dos resultados,
métodos de processamento estatistico foram aplicados usando ANOVA. Os resultados demonstram que para
uma solugao eficaz para o problema da simulagdo do processo de operagdo do pogo e para garantir alta
adaptabilidade dos modelos, a abordagem combinada é o método mais eficaz. Modelos com base em redes
neurais artificiais apds ajuste nos permitem melhorar a eficiéncia da solugao para o problema de previséo e
ao mesmo tempo ter flexibilidade necessaria para adaptagéo da estrutura computacional sob as condi¢cbes de
mudancga de parametros de desempenho. O bloco paramétrico de modelos nos permite utilizar informagdes a
priori sobre dependéncias de paradmetros de desempenho e identificar razoavelmente precisas a deriva de
parametros sob as condi¢des de instabilidade do processo em estudo.

Palavras-chave: regresséao, rede neural, modelo combinado.

ABSTRACT

This article presents the research results of parametric and non-parametric identification methods of
the technological models of well operation using electric submersible pump installations. The use of a hybrid
approach is proposed, combining parametric and non-parametric models to obtain accurate models that allow
the prediction of well performance parameters. Studies of simulation methods under conditions of interference
effect of different level, which are typical for signaling channels of real data management, control systems,
and measuring instruments, have been conducted. The combined models proposed have been constructed



with the help of the Rosenblatt—-Parzen non-parametric regression, parametric models with automatic
adaptation of parameters and artificial neural networks. Such combined models have been shown to possess
essential generalizing possibilities, allowing for smoothing of parametrical data and the restoration of initial
dependences with a significantly smaller error in relation to the disturbing interference. The developed
methods and models were implemented for research purposes in the software system, which allows a
complex simulation of changes in parameters during well operation using the electric submersible pump
installations. To evaluate the results’ statistical significance, methods of statistical processing have been
applied using ANOVA. The results demonstrate that for an effective solution to the problem of the process
simulation of well operation and to ensure high adaptability of the models, the combined approach is the most
effective method. Models on the basis of artificial neural networks after adjustment allow us to improve the
efficiency of the solution to the prediction problem and at the same time have necessary flexibility for
adaptation of the computational structure under the conditions of changing performance parameters. The
parametric block of models allows us to use a priori information about dependences of performance
parameters and to identify reasonably accurate the drift of parameters under the conditions of instability of the
process under study.

Keywords: regression, neural network, combined model

AHHOTALUA

B cratbe npeactaBneHbl  pes3ynbTaTtbl  MCCNEAOBaHMS  METOAOB  NapaMeTpuyeckon U
HenapameTpuyeckon uaeHTMdUKaLUMM MOAENen TEeXHONOrM4YecKoro npouecca 3KcnnyaTauunm CKBaXKWMH C
MCMNOSb30BaHNEM YCTAHOBOK 3JEKTPOLIEHTPOOEXHBIX HacocoB. B cratbe npepnaraetcs ucnonb3oBaTb
KOMOVHMPOBaHHbLIN NOAX04, COYETalLMIN NapaMmeTpudeckne n HenapameTpuydeckme MOLenu Anst NonyyYeHus
BbICOKOTOYHbIX MoOZerneln, MO3BOMAKLWMX OCYLLECTBMTb MPOrHO3MPOBAHME 3KCMIyaTalMOHHbLIX NapameTpoB
CKBaXWHbl. BbINOMHEHbI UCCnefoBaHUsa METOLOB MOAENVMPOBaHUSA B YCNOBUSIX AENCTBUS NMOMEX Pas3fIU4yHOro
VYPOBHSI, XapakTepHbIX A4S KaHarnoB nepegayn CUrHanoB peanbHbIX NHGPOPMALMOHHO-YNPABNSAOWMNX CUCTEM
N cpeactB uamepeHwuin. Npegnaraemble ANsi UCMOSb30BaHUS KOMOWHMPOBAHHbLIE MOAENW MOCTPOEHbI C
ncnonb3oBaHMEM HenapameTpuyeckon perpeccun PoseHbnata-lNap3eHa, napameTpuyeckux Mogenem c
aBTOMaTU4YeCKoV ajanTaumert napameTpoB M UCKYCCTBEHHbl HEMPOHHbIX ceTen. [lokaszaHo, 4TO Takue
KOMOVHMPOBaHHbIE MoAenu obnafatoT CyLleCTBEeHHbIMU 0600LaoW MMM BO3MOXHOCTSAMU, NO3BONSAOLLUMN
OCYLLECTBMATb CriaXnBaHne napameTpuyeckon MHpopMauumn n BOCCTaHaBNMBaTb UCXOOHbIE 3aBUCUMOCTM C
CYLLIECTBEHHO MEHbLUE MO OTHOLLEHUIO K OEWCTBYHOLLUMM MOMexaM oLiMbOKon. PaspaboTaHHble MeToabl u
MOZEenNn B LEeNsiX UccregoBaHusa Obinv peanv3oBaHbl B NPOrpaMMHON cUCTEME, NMO3BOMSHLWEN NPOBOAUTL
KOMMMEKCHY0 CUMYNSLMIO N3MEHeHNs napamMeTpoB npu akcnnyaTauum C  ycTaHOBKaMu
ANEKTPOLEHTPOOEXKHbIX HacocoB. [Ons  OUEHKM CTaTUCTMYECKOM 3HAYUMMOCTU  pesynbTaToB  Obinu
MCMosib3oBaHbl MeToAdbl cTaTtucTMyeckon ob6paboTkm ¢ ucnonb3oBaHvem Metoga ANOVA.Pesynbtathbl
NnoKasblBaKT, 4YTO AN 3PGEKTUBHOrO peLIeHUs 3adadyMm MOLENMPOBAHMS TEXHONOrMYEeCcKoro npouecca
aKcnnyaTauum CKBaxKUH U ana obecnedyeHms BbICOKOW adanTUBHOCTW mogenewn, Hanbonee acpdeKkTUBHbLIM
BapMaHTOM OKasblBaeTCs WMMEHHO KOMOMHWPOBaHHbIM noaxod. Mogenn Ha OCHOBE WCKYCCTBEHHbIX
HENPOHHBbIX CeTen Mocfie HACTPOWKM MO3BOMSAIT MOBbICUTL  3(PEEKTUBHOCTL  peLleHnsd  3agaudu
NPOrHO3MpoBaHUA U npu 3TOM obnagalT Heobxooumon TMOKOCTbIO AN aganTauuy BblYMCIUTENBHON
CTPYKTYpbl B YCMOBUSAX M3MEHEHMS1 3KCMNyaTauuoHHbIX MapameTpoB. [lapameTpuyeckuii 6nok mopenew
No3BONSAET MCNONb30BaTb anpuopHble CBEAEHME O 3aBUCUMOCTHAX IKCMNyaTauMOHHbIX MapameTpoB WU
[OCTaTO4YHO TOYHO onpedenaTb Apend napaMeTpoB B YCMOBUSIX HECTaLMOHApPHOCTM UCCRnegyemMoro
npovecca.

KnioueBble cnoBa: pezpeccusi, HelpoHHasi cemb, KOMBUHUPOB8aHHasi MoOersb.

1. INTRODUCTION efficiency of computational models. In
combination with effective models and methods
for generation of possible solutions based on
estimates of the current and predicted values
obtained with the help of calculation models,
the model approach will significantly improve
the effectiveness of many production problem-
solving systems.

The modern period of science and
technology development, and specifically in the
oil and gas industry, requires intensive use of
simulation methods for solving the problems of
decision-making support during the operation of
equipment. The efficiency of such systems is
obviously influenced by a significant number of
factors, among which is the accuracy and



Developing an effective basis of systems
based on technological models is an important
trend of modern solutions in terms of
management and optimization of technological
processes in the oil and gas industry. In this
direction, the critical task is to build effective
process models of oil and gas well operation in
different modes. Within the framework of the
term ‘effectiveness,’ the set of characteristics of
models that can be used within the framework
of the mathematical basis for decision-making
support systems during the operation of
equipment is considered. Such characteristics,
besides the accuracy of the obtained models,
include, in particular, the possibility of correction
(adaptation) of models in use, computational
efficiency in terms of compactness, simplicity of
models, and the possibility of structural and
parametric synthesis of models in an automated
mode.

These characteristics, to a significant
extent, determine the possibility of using the
models in real well operation conditions. It is
understood that the accuracy of the
mathematical model, which is one of the most
important characteristics, provides an
opportunity to compare and use the results
obtained with the help of the calculation model
in a real-life object. Taking into account the
specifics of the simulated system and the tasks
to be solved on the basis of simulation during
well operation, significant deviations of the
model results from the parameters observed in
the real well can lead to a significant decrease
in the efficiency of operation as a result of
incorrect assessment of the current state of
parameters or incorrect prediction of the
development of the production facility
parametric trends. It gives evidence of the
necessity of using high-precision identification
methods for simulation of the processes and
objects during well operation. Such methods
should provide an acceptable level of deviation
in the estimation of the parameters of simulated

objects in conditions that characterize the
performance of the production facility
‘production well — electric submersible pump

(ESP) installation’.

Operational conditions of such production
facilities are characterized by the presence of
factor combinations that significantly complicate
the use of methods of direct
physicomathematical simulation in an explicit
form. Such factors include significant variability
of object parameters, even if they are operated
within the same group or field, and, moreover,

in situations of significant type difference and
geographical diversity. This makes it necessary
to clarify the situation and revise the parametric
and structural components of such models,
which  for traditional physicomathematical
models requires significant efforts of expert
analytical orientation. Another factor is the
instability of basic trends in technological
parameters, which requires when using the
method of direct physicomathematical
simulation, the use of special procedures for
parametric optimization and adaptation of
models to obtain reasonably accurate model
results.

Thus, the requirements for the model
adequacy of the production facility in the case
of the ‘producing well — ESP installation’ model
consideration directly agrees and evolves into
the requirement to ensure the adaptability of
models, as well as into requirements to provide
the possibility of structural and parametric
synthesis and adaptation of models in the
automated mode.

For this purpose, the paper considers a
set of methods that allows the implementation
of the model structural and parametric
synthesis in an automated mode. Taking into
account the specifics of the simulated
production facilities, the requirement to obtain
accurate model results under the conditions of
different level of interference is also important
today.

2. METHODS

Definition of effective methods for
automated  generation of mathematical
computational models for facilities of the oil and
gas industry such as ‘production well — ESP
installation’ is one of the most important
research trends in the field of simulation of oil
and gas industry facilities.

The majority of the available works are
focused on the model building with the help of
the expert analytical approach, which allows us
to obtain physicomathematical models of the
‘particular’ orientation (Ahmadi et al., 2015; Lu
et al., 2018; Su and Oliver, 2010). In most

cases, such models are obtained by
researchers in the course of adaptation of ‘well
- producing formation’ fundamental

physicomathematical models for particular
production facilities and have a high value
within the framework of the considered type of
wells, group of wells, field or production region
(Clarkson and Pedersen, 2011; Ramirez-



Jaramillo et al., 2010; Sanchez-Rivera et al.,
2015).

From the point of view of the system
approach it appears that in order to ensure the
efficiency of solving technological tasks, such
physicomathematical models should be
supplemented, if not replaced, with a set of
methods and algorithms that allow us to identify
the operational facility in an automated mode.
Such methods for building models of
technological processes of well operation can
be used as part of the analytical simulating link
of decision support systems. An important
aspect also seems to be the possibility of their
application as a ‘computational measuring
device’ in the situational analysis during the
performance of technological operations, when
it is necessary to deal with significant
interference in the measurement channels, or it
is impossible to obtain correct data with the
help of physical measuring devices. In such
cases, the technological process control,
parameter definition of the technological
equipment operation is reasonable to carry out
on the basis of design parameters of the
operational facility. Obtaining high-precision
design parameters before the recovery of
correct readings or performance of physical
measuring devices is one of the important
factors to ensure reliable, safe, and efficient
operation.

It is obvious that the accuracy of the
parameters calculated on the models can be
ensured in case of using only such models,
which have a high degree of adequacy to the
operational facility. It appears that the features
of the operational facilities such as ‘well — ESP
installation’ determine the need for the use of
models which make it possible the adaptation of
the models taking into account the instability of
the processes in the ‘well — producing
formation” system and changes in the
characteristics of the operational equipment. It
is also important that adaptation, structural or
parametric adjustment of models is also carried
out in the automated mode, being the actual
‘built-in’ possibility of the simulation method. It
will allow the formation of a relatively
autonomous  analytical and simulation
computational module, focused on a specific
operational facility and its operating conditions.
This property seems to be important, because
through the use of the direct method of
generating physicomathematical models by the
expert analytical method, the variability and
instability of the parameters of the operational

objects, as well as their significant number, will
lead to the need to perform a significant amount
of analytical work and, consequently, to the cost
escalation.

In this connection, a set of methods has
been defined that can be used to build models
for operational parameters calculation of such
facilities as ‘production well — ESP installation’.

The methods and their description are
presented below.
Methods of model parametric

optimization. Parametric identification assumes
the use of methods that allow the evaluation of
the model parameters, given with accuracy to a
set of parameters on the basis of sample data.
Let the model of the object be given, which is
described by Equation 1.

y, A<x,A> (Eq. 1)

where ) is the model output, X, are

object input variables (known),?x are
parameters of the accepted structure of the
object model, which require definition, Ais the
operator, which converts input variables to
output ones (known). The optimality criterion for
their selection is Equation 2

R} MIO(x)-F(x2) } >min (Eq. 2)

where y(x) are the output values of the

simulation object (measured values), and
V(x,A) are the output values of the model.
It is necessary to determine the

coefficients A = (1',...,A") of the object model

accepted structure according to the available
input and output variables

(Eq. 3)

in the

samplingV’ {xi,yi},i I,_S

This condition can be written
following form:

R M{O@-FAF MOk A —>min,  (EQ4)

where Q(x,A) is some convex quality
function.

The solution to this problem can be found

with the help of the following recurrent
procedure:
Ns Noat=v,V,0(x,,Xs-1),  (Eq. 5)



Where s is the number of the observation
pair in the sample, § I,Nwhere Nis the
sample size which is selected randomly;

Va,-Q(xS,Kisq)is the gradient of the
i,

function Q(x,,\'s—1) by a parameter A

s is some number that meets Robbins-
Monroe conditions:

1. v, >0,Vs, (Eq. 6);
2. Y, #0,Vs, (Eq. 7);
3. limy, O., (Eq. 8);
§—>00
o0
4, ZYS is a divergent numeric
S 1
sequence;
—, 2
5. ZYS is a convergent numeric
S 1
sequence.

Let us note that) *is the exact solution,
i.e., that R(A*) min R(A) exists, but it is
py

never known in real problems.

For a recurrent procedure, the
convergence theorem is proved:

lim M {(k, —A*)*}=0,  (Eq.9)

§—>0

There are several algorithms which allow
us to improve the efficiency of the solution to
the problem of model parameters setting with
the help of the recurrence procedure described
above. The higher efficiency is understood as
the finding of parameters closer to the optimal
ones, and the higher degree of parameter
approximation to the optimal parameters.

It is proposed to use the following
parametric identification algorithms as optional
ones in the operated experimental sample of
the expert system:

Litvakov's algorithm (Rosenblatt, 1956):
1. Let
approximation A, .

us select some initial

2. For t

estimation Xt, where the number of t is equal
to the number of observations in the sample.

iterations, we get some

3. Let us start the recurrent procedure
again, but for the initial approximationkowe

take Xtobtained at the previous step, and we
get the estimation A, ,

M such cycles.

Usually, in practice, the numberisM 3+5.

The theorem is proved for Litvakov's algorithm:

Iy i
limA,, = X,
M —o

Application of Litvakov's algorithm allows
us to increase the accuracy (from the point of

view of proximity to A%') of the obtained
estimation A, .

Kesten's algorithm (Parzen, 1962).

It is assumed that the initial approximation
is taken relatively far from the minimum point

X*. As long as the gradient does not change
the sign (moving in the required direction) we

don’'t change yX , and when the sign of the
gradient changes, i.e., there will be a jump over

the minimum point, we change 'yz”". And again,

we leave it unchanged until the jump-over
occurs again. This algorithm allows us to
increase the speed of finding the minimum point
because the speed of movement to it does not
constantly decrease with the increase of the
iteration number.

Litvakov's  algorithm and  Kesten's
algorithm  belong to one-step recurrent
algorithms. These two algorithms can be used
together.

Methods of nonparametric simulation.
The regression is some average quantitative
dependence between the object input and
output (Ahmadi et al., 2015). The problem of
regression analysis can be formulated as
follows. Suppose there is some object. There is
an observational sampling of the object inputs

and outputs V' {xi,yi },i =1,n. The function

describing the dependence between the object
input and output is unknown. It is necessary to
restore the estimation of the function describing



the dependence between the input and output
of the object according to available
observations of the object's input and output
values. The nonparametric regression estimate
(taking into account the estimate of Parzen—
Rosenblatt probability density) is calculated as
follows (Davis et al., 2011; Demuth et al., 2014;
Szegedy et al., 2013):

MY | x} =n(x) ZKN(%}

X—X

whereK( l)is the truncated bell-

shaped function.

Thus, it is possible to restore the
dependence between the input and output of
the object, using a training sample of the object
observations for the construction of a non-
parametric estimator.

When using the quadratic criterion of the
best correspondence between the estimation
and the true dependence, it was found that the
optimal form of the bell-shaped kernel is the
parabolic kernel:

0.75(1-z° z|<1
0, 1</
The optimal value of the blur
parameteri(n) is  found  from  the

ratioh(n) cn”'">, wherenis the sample

volume and cis the positive constant. Exactly
the constantc has the greatest influence on the
quality function and determines the blur
coefficient. It is calculated on the basis of the
sample by minimizing the quality indicators that
characterize  the best smoothing  of
experimental data.

Apart from the use of the parabolic kernel,
it is possible to use the triangular kernel:

(1—‘2), ‘Z‘Sl
K@){o, 1<l

A quality criterion based on the use of a
sliding examination’ is used to adjust the blur

parameter ii(n) :

(Eq. 10)

1 _ 2 . _ u X—X,
L, -2 (-7,(x)" min,  7,(x) ZK»[ J

o I h
k=i

, (Eq.11)
The peculiarity of this criterion is that the

examination point (,, J’;)is not involved in the

construction (training) of the model T ( ;) .

As was already mentioned above, the
optimal, in terms of minimizing the quality
indicator, the value of the blur parameter is
determined by the following formula

h(n) cn™”?, (Eq. 12)
The choice of the optimal value of the
constantc is significant complexity.

The optimal value of the constant can be
found by the method of the golden section. The

boundaries of the search interval[a;b] were

defined as follows:

1/5
a A-n'’,

A x.,,—x,0 Ln-1), (Eq. 13)

b 4is the empirical value (determined by
multiple observation of the optimal value of the

constant ¢ at various values of b).

Models based on artificial neural
networks. Artificial neural networks are
computational  structures  that  simulate

biological processes, usually those taking place
in the human brain (Gurney, 2014). They
represent distributed and parallel systems
capable of adaptive learning. An artificial
neuron, named by the analogy with a biological
prototype, is used as an elementary transducer
in such networks.

The neural networks have a number of
advantages over other methods of data
simulation and analysis due to their ability to
generalize, i.e., produce effective results based
on data that was not used during training. They
are also highly efficient as a result of internal
data parallelization, nonlinearity, and
adaptability (Curteanu et al., 2011; Osovsky,
2020). In sum, artificial neural networks are a
powerful simulation and data analysis tool and
can be used to solve complex, large-scale
problems that are difficult or impossible to solve
by other methods.

While there are many topologies of the
artificial neural networks, about 80% of all real-
life applications are based on multilayer fully
connected networks of direct distribution —
multilayer perceptrons (Bukhtoyarov et al.,
2010;, Hansen et al., 1990). This network type
was also adopted in the course of the studies



described in this article. For the structural
synthesis of neural network models, the
probabilistic evolutionary method was used
(Gutta, 1996).

The ability of neural networks to learn
from environmental data is perhaps their most
important and useful feature. Artificial neural
networks learning is the process during which
free parameters characterizing the network are
adjusted by simulating the environment the
network aims to represent. The learning type is
determined by the way these parameters are
adjusted (Hansen et al., 1990). Typically, neural
network training involves an iterative process as
a part of which weight -coefficients are
determined. The evolutionary genetic algorithm,
which was proven particularly efficient in solving
such problems, was used in the present study
to adjust the weight coefficients.

Combined models. Combined models
represent a defined set of calculation models of
different (sometimes the same) types, which
are used together to solve one problem. For the
first time, the idea of combining separate
computational models (such a combination can
be called an ‘ensemble of models’ or a ‘team’)
was proposed in work (Folino et al., 2016). The
combined model approach was subsequently
developed further and was successfully used to
solve a wide range of practical problems, such
as recognition tasks (Yu et al., 2011; Akhand et
al., 2012), medical diagnostics (Breiman, 1996),

classification of seismic signals (Schapire,
1990) and many others.
Structural and parametric synthesis

methods, which are commonly adopted when
developing individual models, are
supplemented in a combined approach by
specialized procedures that allow the efficiency
of solving a number of problems to be
improved.

The most common approaches are
bagging and boosting. Bagging or bootstrap
aggregating was first proposed by Briemann
and is based on random sampling with
replacement (bootstrap) (Mishchenko et al.,
2011). In this context, the term ‘bagging’
pertains to the fact that each model is built
using a separate sample, denoted as a booster

sample, drawn from the initial set of
observations.

Boosting, developed by R. Shapire
(Maltsev, 2013), involves forming each

subsequent model in the set using a sample
that includes those examples on which previous

models gave significantly different results from
the target one. Due to the sequential nature of
the processing, the task for each subsequent
model becomes more difficult. In the present
study, the combined models (neural network
model — nonparametric model — parametric
model) were developed using this approach.

Numerical studies. To carry out numerical
studies, a software system "Program for
simulation of oil production conditions by
electric submersible pump installations" was

developed. In this software  system,
physicomathematical calculation models of
‘production well — ESP installation’ object

parameters have been implemented. The
physical and mathematical models incorporated
in the program were verified on the basis of
operational data obtained from 10 oil and gas
production facilities owned by one of the oil and
gas companies. The physicomathematical
models implemented in the software system are
based on the solution obtained by taking into
account pertinent results reported in extant
literature (Asuncion et al., 2007). It is important
to note that all appropriate models were
developed using an expert analytical approach
without the possibility of automating the
relevant procedures, which limits the potential
for their generalization to other simulated
facilities.

The verified model solutions adopted in
this work were applied to obtain the initial
dataset for numerical studies of the simulation
methods considered in the article. In order to
simulate real systems, in which the measuring
channels are affected by different interference
levels, initial datasets with different levels of
overlaid interference on the recorded
parameters pertaining to the operational
facilities were formed. For this purpose, additive
interference dependent on the signal level in
the simulated measuring channel was
considered. The analyzed levels of interference
had values of 0% (no interference), 5%, 10%
and 25%.

In order to study the structural synthesis
methods, and parametric parameter,
adjustment approaches, observation samples of
the ‘production well - ESP installation’ object
operational parameters were obtained. In order
to study the possibility of adapting the models,
multiplicative ~ superimposition of  trends
(increasing and decreasing) sourced from the
ControlChartDataSeries set was used and was
allocated in the dataset repository for data
analysis algorithms. This set is widely used to



evaluate methods and algorithms for the ability
to capture the drift of parameters and determine
the instability of objects.

As the main criterion of efficiency the
estimation of mathematical expectation and
estimation of the error dispersion of the
simulation, calculated on the basis of the data
obtained during 50 independent startups of the
algorithms, were used.
Thefollowingformulawasusedtocalculatetheappr
oximationerrorineachstartup:

100%

Error max min Z]Of —JYi ‘
S(y —y )il ,  (Eq.14)

Here! is the number of the record in the
sample,oi is the calculated value obtained on

the model, Yiis the value of the output variable
max min

in the sample, y andy are the maximum

and minimum values of the output variable,S is

the number of elements in the sample.

For all methods, in order to obtain correct
results of the numerical experiments, the same
amount of computational resources was used.
The volume of observation sampling used for
building and adjustment of models was defined
equal to 500, 5000, and 100000 parameter
measurements for each of the approaches. The
results averaged over such samples are given
in the results section.

ANOVA methods were used to study the
significance of differences in the effectiveness
of the approaches wused. A pair-wise
comparison of the methods studied was
performed in order to identify the statistical
significance in the distinguishability of the
results obtained in the course of the numerical
study at significance levelar 0,05 .

3. RESULTS AND DISCUSSION:

The following are the results of the
method study. The table presents the
evaluation results of the models for determining
the following parameters of the operational
facility, which were calculated with the help of
computational models at different levels of
interference: pressure P, level H in the well,
flow rate Q.

The obtained results give evidence of
the applicability of the considered methods for
building effective computational models for
estimation of operational parameters of such

objects as ‘production well — ESP installation’.
Let us analyze the obtained results in relation to
the specified criteria for the efficiency of the
models for the use in real well operation
supporting systems with electric submersible
pumps installations. Such criteria, which have
been proved earlier, include:

- adequacy of the model characterizing
the degree of closeness of the model results
and the results of the real production facility;

- possibility of adaptation (structural or
parametric) of the obtained computational
model;

- stability of the model to the presence of
interference in the measuring channels in
forming the initial information for the procedures
of structural and parametric synthesis.

Generally, the methods of parametric
adaptation considered in the article have shown
sufficiently high efficiency in the cases of a
model building under the action of small
interference in measuring channels. Adequacy
of such models, for the most part, is determined
by the initially defined structure of models of
analyzed dependences. If there is a sufficiently
large amount of a priori information about the
simulated operational facility and its features,
the structure can be synthesized by an expert
analytical method. However, in practice, this is
an extremely difficult task, usually solved with a
high degree of generalization by research
teams. Such an approach has a significantly
limited applicability in real conditions when the
stock of operational facilities reaches hundreds
and thousands of ‘producing formation —well —
pump’ systems. Taking into account the
significant differences in the characteristics of
such systems, the generalized structure of the
model may be unreliable for a number of
simulated facilities, and, consequently, the
methods of parametric identification will not be
able to achieve the required accuracy
indicators. A separate factor complicating the
application of such an approach is the need to
determine a totality of algorithm settings for
adjustment of parameters, which have a
significant impact on their effectiveness.

Determination of such parameters in the
course of the study was performed at a
preliminary stage during test startups, which in
the simulation conditions of real objects have
limited effectiveness due to, for example, the
presence of errors in the data measurement for
adjustment. Based on the results of the



conducted research, it is also possible to judge
about the significant sensitivity of parametric
adaptation methods to the increase in the level
of interference overlaid on the simulated
parameters. This makes it difficult to use such
methods in the building models for use as a
‘computational measuring device’. Thus, this
method obviously appears to be effective in
case of a successful choice of the initial
structure, but in real production situations,
taking into account the variability of simulated
objects, such a choice is significantly
complicated. The flexibility is significantly
restricted by the choice of the initial structure,
which has a negative impact on the results of
model adaptation in case of incorrect definition
of such a structure, or in case of structural
evolution of the simulated system, for example,
in case of qualitative changes in well operation
conditions or change in equipment composition.

The method appears to be sensitive to
the interference, taking into account the need
for the correct choice of parameters for the
corresponding algorithms of adjusting the
model's coefficients, which requires expert
participation and complicates the possibility of
its automated use.

In contrast to the methods of the
parametric setting of regression models, the
method of nonparametric regression does not
require the presence of a priori assumptions
about the structure of simulated dependencies
for the operational facility. This makes it
possible to build such models for a wide range
of facilities using automated computational
procedures based on a totality of observation
sets. In this connection, such models can be
used to build high-precision models of such
objects as well — ESP installation’, as
evidenced by the results obtained. A significant
positive aspect of using such regression models
is their resistance to interference in the samples
of measurements (observations) in case of
correct adjustment of the blur parameter, which
determines the degree of smoothing through
the use of bell-shaped functions. On the other
hand, exactly the necessity for correct
adjustment of the blur parameter is one of the
factors making it difficult to use such models in
practice. It is obvious that in case of restoring
multidimensional  dependences, the blur
parameter should be defined and optimized
with respect to each input variable because the
range of variation of input variables and
discretization of measurements can be
significantly different. This requires the use of

special optimization procedures, the
implementation of which is an additional factor
complicating the use of such an approach. In
addition, it is obvious that through the use of
nonparametric regression models it is
necessary to ensure a compromise between
the capability of the model to smooth out
perturbations, the accuracy in the reproduction
of simulated dependencies and the possibility of
effective adaptation of the model .In the case of
the algorithmic solution of such a problem,
nonparametric models appear to be quite
effective according to the three criteria indicated
above. It is important to note that their value is
somewhat reduced by their relatively high
computational complexity, which is conditioned
by the need for calculations using a complete
sample of observations. Besides that, such
models are actually ‘black’ box models that
don't allow us to receive analytical data about
the restored dependences. As can be seen
from the above, it is expedient to use such

approach in the absence of the a priori
information about the dependencies,
interference  effect and provision  of

computational capabilities allowing to process
data of considerable volumes.

In the case of using artificial neural
networks as a simulation method, the necessity
of constant computational processing of initial
data, typical for the nonparametric approach,
disappears. The neural network model can be
built using computer-aided procedures on the
basis of available data about the parameters of
the operational facility ‘well — ESP installation’,
or on the basis of data obtained during the
operation of a similar facility. It seems important
that the models based on the neural networks
allow us to organize the procedure of additional
training (additional adjustment), which will allow
the initial model for the specific simulated object
to be adapted. Thus, the models based on the
artificial neural networks allow us to obtain
sufficiently effective computing procedures for
simulation and forecasting of the technological
process parameters of well operation with the
help of ESP installations. As the analysis of the
results of the numerical studies indicates, the
neural network model makes it possible to
ensure the efficiency compared with the
efficiency of nonparametric models, and
specifically, in conditions of interference with
the values of simulated parameters of the
operational facility. At the same time, the
resulting computational procedure appears to
be more computationally effective, because in
order to obtain individual predicted values it is



not necessary to carry out the computational
operation fully involving the available samples
of observations. Prime computational costs in
case of using neural networks are typical for the
stage of the model building, namely the
synthesis of the models structure and setting of
parameters (of training). This task is usually
solved at the preliminary stage, and then the
neural network provides fast enough
calculations in the mode of real operation. If
additional training is necessary, only the task of
parametric adaptation is usually solved, which,
in the typical case of small amounts of new data
on the functioning of the simulation object is not
computationally  capacious. @ Methods  of
structural synthesis of the neural network
models and their settings are well developed
and have a high degree of automation. In this
work, a probabilistic approach to structure
generation was used to construct neural
network structures, and an effective genetic
algorithm was used to train neural networks
[Hansen, 1990; Gutta, 1996]. The disadvantage
of the neural network models, in general, is
their non-transparency that means the
impossibility of restoring the formula and
structure of the model in the form which is
explicit and convenient for further analysis.
Nevertheless, taking into account the
computational efficiency, accommodation
capability and stability of solutions in relation to
interference in the samples of parameters,
along with a high degree of automation of all
stages of building and use, based on the
research findings, the neural network models
can be considered as one of the most effective
solutions for simulating the operational
parameters of the facilities like ‘production well
— ESP installation’.

A combined approach can be considered
as an even more effective solution in
conjunction  with  the three indicated
performance criteria. The combined model
allows the synergetic interaction of models of
certain types to be provided. Previously, the
effectiveness of such a solution was repeatedly
shown through the use of the models of the
same type, for example, the neural network
models. In this study, we have considered an
approach that uses different types of models.
The results of the numerical studies
demonstrate that the accuracy of the obtained
solutions of the combined model appears to be
statistically higher under different conditions of
experiments (different levels of interference and
types of trends that determine the drift of the
object parameters). From the point of view of

ensuring the approach correctness, as one of
the criteria, ensuring equality of conditions for
comparing separate methods and combined
approaches, the principle of equivalence of
used computing resources (processor time
consumption) in the data processing of a
specified volume was implemented through the
studies. Corresponding parameters were
selected in advance in the course of preliminary
startups of the algorithms and methods. For the
combined approach, restriction to the total
amount of computing resources available to all
combined approaches were formed.

As can be seen from the above, the study
has identified the characteristics of the
simulation methods, their advantages, and
disadvantages. It has been shown that on
retention of the computational resources
equivalency, the combined approach was the
most effective.

4. CONCLUSIONS:

The article considers the problem-solving
method  of structural and  parametric
identification of models that allow the estimation
of the current values and predict operational
parameters of such facilities as ‘production well
— ESP installation’. It is proposed to use a set of
simulation methods based on parametric
optimization methods, the nonparametric
regression method, and the artificial neural
networks method to solve such a problem. The
corresponding algorithms have been
implemented in the software system, providing
the opportunity to study their properties on the
simulation data of real wells, operated with the
use of ESP installations.

Numerical studies of the considered
methods in the conditions of variation of well
operational parameters, parameters of overlaid
interference under the conditions of physical
measuring instruments operation and various
trends of the drift of simulated parameters were
carried out. It has been shown that taking into
account the criteria for such models, it is
reasonable to use combined models built on the
basis of a model symbiosis of the types under
consideration. Efficiency, particularly in terms of
the accuracy criterion under different conditions
of the experiment, of such combined models
built with the use of the bagging approach has
appeared to be higher than for models built
using each of the methods separately. Thus,
the results of the numerical studies
demonstrate that for the effective solution to the



problem of the process simulation of well
operation and to ensure high adaptability of
models, the most effective option appears to be
exactly the combined approach. In this case,
the non-parametric component of these
combined models ensures high accuracy of the
results in the mode of computational ‘measuring
device’. Models on the basis of the artificial
neural networks after adjustment allow us to
improve the efficiency of the solution to the
prediction problem and at the same time have
the necessary flexibility for adaptation of the
computational structure under the conditions of
changing performance parameters.The
parametric block of models allows the use a
priori information about dependences of
performance parameters and to identify
reasonably accurate the drift of parameters
under the conditions of instability of the process
under study.

In future, the methods and approaches
considered in the article are supposed to be
used to build models of operational oil and gas
production facilities, defined by the system
‘production well — autonomous packer — ESP
installation’. Such a system appears to be more
complex for simulation and, obviously, will
require further development of direct physical
and mathematical simulation approaches and
simulation methods on the basis of the
combined models studied in this paper.
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