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Abstract 

A study of heat capacity, thermal dilatation, permittivity, dielectric loops and susceptibility to 

hydrostatic pressure was carried out on NH4HSO4 - porous glass nanocomposites (AHS+PG) as 

well as empty glass matrices. The formation of dendrite clusters of AHS with a size, dcryst, 

exceeding the pore size was found. An insignificant anisotropy of thermal expansion of 

AHS+PG showing a rather homogeneous distribution of AHS over the matrix was observed. The 

effect of internal and external pressures on thermal properties and permittivity was studied. At 

the phase transition P-1 ↔ Pc, a strongly nonlinear decrease in the entropy ΔS2 and volume 

strain (ΔV/V)T2 was observed with decreasing dcryst. The linear change in temperatures of both 

phase transitions P-1 ↔ Pc ↔ P21/c under hydrostatic pressure is accompanied by the expansion 

of the temperature range of existence of the ferroelectric phase Pc, while this interval narrows as 

dcryst decreases. 

 

Keywords: Nanocomposite, Ferroelectrics, Borosilicate glass, Phase transition, Entropy, High 

pressure 

 

1. Introduction 

Despite the wide popularity of porous glasses due to the possibility of their use in various 

scientific studies and many industrial applications, there is a series of questions and problems 

related to their preparation, certification and, especially, application [1,2]. Recently, a special 

attention was paid to the porous glasses as a basis for creating composite materials. A lot of 

publications appeared describing the researches of glass matrices with embedded materials of 

various nature, in particular ferroelectrics. In the latter case, the main direction of research of 

glass composites was, as a rule, associated with the study of behavior of the dielectric properties 

of the ferroelectric component in confined geometry, and its dependence on a type of the 

matrices and diameter of the pores [3-10]. Other properties, in particular thermodynamic, have 

been examined to a lesser extent. At the same time, the study of the heat capacity and thermal 

dilatation of composites provides information on the effect of interaction between components of 

composites on entropy and deformation associated with the ferroelectric phase transitions [9,11-

14]. The effect of external pressure on the ferroelectric nanocomposites has not been examined at 

all. Recently it has been shown that high-pressure is a very powerful tool to modify 

nanostructured materials, study interactions at the nanoscale and design new nanomaterials [15]. 

 In this connection the data on the heat capacity and thermal dilatation of the nanoporous 

matrices are also very important. However, as far as we know, thermodynamic properties of 

porous glasses were not studied systematically. 
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This paper presents the results of studies of nanocomposites prepared on the basis of 

ammonium hydrogen sulfate, NH4HSO4, embedded into borosilicate glass matrices. We intended 

to analyze the effect of internal pressure associated with the confined geometry as well as 

hydrostatic pressure on the entropy, elastic strain and baric coefficients of the phase transitions in 

ferroelectric component. For this purpose, the heat capacity, thermal dilatation, dielectric 

properties and susceptibility to external hydrostatic pressure of the nanocomposites were 

investigated. To be correct when analyzing data on the properties of ferroelectric component, 

heat capacity and thermal expansion of the nanoporous glasses were also studied. The originality 

of our investigations compared to recent studies [9,12,14] of heat capacity and permittivity of 

nanocomposites with NH4HSO4 is associated with the following points: 

1) the porous glasses were filled with molten NH4HSO4 to reliably avoid the presence of an 

aqueous solution in the pores; 

2) studies of the heat capacity were performed using an adiabatic calorimeter showing high 

resolution and high stability of measurements instead of the low sensitive differential 

scanning calorimeter [14]; 

3) permittivity was studied at atmospheric and high pressures; 

4) investigations of thermal dilatation and the effect of pressure on phase transitions are 

pioneering; 

5) detailed studies of the thermodynamic properties of porous borosilicate glasses were 

carried out.  

The choice of the object of research is due to several reasons. First, NH4HSO4 undergoes 

a succession of the phase transitions P-1(P1) (T2 = 160 K) ↔ Pc (T1 = 271.7 К) ↔ P21/c of the 

first and second order, respectively [16-18]. (Two possible space groups for the phase at T < T2 

are presented, since there is still no consensus on the nature of the corresponding structural 

transformation.)  Second, previously we have carried out studies of the effect of chemical 

pressure on phase transitions, as well as electro- and barocaloric effects in solid solutions (NH4)1-

xRbxHSO4 [19]. Third, in the manufacture of composites, we used an important advantage of 

NH4HSO4, in comparison with other water-soluble ferroelectrics, associated with the possibility 

of its melting without decomposition. Recent comparative studies of the NH4HSO4 samples 

prepared from an aqueous solution and the melt have shown quite similar thermodynamic and 

dielectric properties [20]. 
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2. Sample preparation and measurement technique 

 

Hereinafter, NH4HSO4, borosilicate porous glasses and NH4HSO4-glass nanocomposites will be 

labeled as AHS, PG and AHS+PG, respectively. For the present study we have used PGs with 

five different pore sizes. The samples of the glass matrices with average diameter of pores 23, 

46, 160, and 320 nm were cut out in the form of flat plates of about 1.0×1.0×0.05 cm3. The 

volume of PG with pores 5 nm in diameter (PG5) was 0.291 cm3. The porosity was determined 

by the relative mass decrement method during the preparation of the samples as well as 

evaluated by adsorption of a water stream and a mercury intrusion porosimetry. The pore sizes 

were determined in the framework of a cylindrical pore model. The methods of certification of  

samples studied one can also see in [1]. The porosity of different PGs was found in the range of 

40 – 55% (Table 1). 

 The nanocomposites AHS+PG were fabricated by immersion of empty PG into the 

melted AHS for several hours. To avoid the non-equilibrium state in AHS observed by [21], 

subsequent cooling down to room temperature was carried out at a very low rate (~ 0.1 K/min). 

A mechanical polishing was used to remove micro-crystals from the surfaces of the composite 

samples. The filling factor was estimated as the ratio of the volumes of the embedded AHS to the 

pores volume (Table 1). For dielectric measurements silver electrodes were painted onto the 

samples' surfaces.  

 

Table 1 Characteristics of porous glasses and nanocomposites. dpore and dcryst are the sizes of 

pores and nanoparticles, respectively 

 

Glasses Nanocomposites 

dpore 

(nm) 

Porosity 

(%) 

Filling 

factor 

(%) 

dcryst 

(nm) 

5 42 38 9.0(4) 

23 55 90 70(2) 

46 55 67 47(2) 

160 46 81 500(39) 

320 50 74 115(15) 

 

 Characterization of AHS, PG and AHS+PG was carried out at room temperature by XRD 

using a Bruker D8 ADVANCE powder diffractometer (Cu-Kα radiation). Fig. 1a depicts a 
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diffraction pattern of PG46, which is typical for the other samples of PG and for the amorphous 

materials without any crystalline phases. The results of Rietveld refinement for the samples AHS 

and AHS+PG46 are shown in Fig.1(b)-(c). No additional phases were observed in ammonium 

hydrogen sulfate as well as in all the nanocomposites. The information on the ferroelectric 

nanoparticles size, dcryst, filling the pores of matrix was obtained using TOPAS 4.2 program [22]. 

The high reliability of the obtained data is confirmed by relatively small values of estimated 

standard deviation presented in Table 1 which shows that an increase in the pore diameter is not 

accompanied by monotonic increase in dcryst. Moreover, in the case of three composites with 

PG5, PG23 and PG160, dcryst exceeds the pore diameter. Recently, similar situation observed in 

nanocomposites with the embedded NaNO2 was explained as associated with the formation of 

the dendrite clusters in pores [4]. 

 

Figure 1 XRD patterns: (a) empty PG46; (b) AHS; (с) AHS+PG46. 

 

The micromorphology of the surface of empty glasses and nanocomposites was examined 

using scanning electron microscopes (SEM) Hitachi TM3000 and Hitachi S-5500 (Hitachi High-

Technologies Co., Ltd., Tokyo, Japan). The typical SEM images of the samples PG5, PG46 and 

AHS+PG46 are shown in Fig. 2. One can see noticeable loss of the image contrast in 

nanocomposites. 
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Figure 2  SEM images: (a) PG5; (b) PG46; (c) AHS+PG46. 

 

In order to perform a correct analysis of the properties of AHS nano-sized crystals 

embedded into the glass matrix, it is necessary to have information on the properties of glass 

matrices and AHS. Recently, we have studied thermodynamic properties of bulk AHS prepared 

from an aqueous solution and the melt and found that parameters characterizing both phase 

transitions are close to each other for the both samples [20]. To our knowledge, the data on 

thermodynamic properties of boron-silicate glasses are absent. So first of all we studied the heat 

capacity and thermal dilatation of PGs which were then filled with AHS. 

Measurements of thermal expansion were performed using a push-rod dilatometer 

(NETZSCH model DIL-402C) with a fused silica sample holder. Experiments were carried out 

in the temperature range 100 – 300 K with a heating rate of 3 K/min in a dry He flux. The results 

were calibrated, by taking quartz as the standard reference, to remove the influence of system 

thermal expansion. Because of a large difference in thermal dilatation of PG and AHS, the 

uncertainty in measurements was individual, about 20% for PG and 8% for AHS+PG. However, 

the reproducibility of data obtained in successive series of all the measurements was not less than 

5%.  
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Measurements of the heat capacity of samples examined in dilatometric experiments were 

performed in a wide temperature range of 82–300 K by means of a homemade adiabatic 

calorimeter with three screens, as described by [23]. The inaccuracy in the heat capacity 

determination did not exceed 0.5–1.0%. The heat capacity of the “sample+heater+contact 

grease” system was measured using discrete as well as continuous heating. In the former case, 

the calorimetric step was varied from 1.5 to 3.0 K. In the latter case, the system was heated at 

rates of dT/dt ≈ 0.15–0.30 K/min. The heat capacities of the heater and contact grease were 

determined in individual experiments.  

Dielectric properties were also studied in an adiabatic calorimeter. The temperature 

behavior of the permittivity ε was investigated using an E7-20 immittance meter at frequencies 

from 1 Hz up to 106 Hz while heating at a rate of about 0.5 K/min. The dielectric hysteresis (P-E 

loop) was examined using an aixACCT EASY CHECK 300 technique. The driving-field profile 

was a triangular wave of amplitude Emax = 5 kV/cm. The frequency of the measuring electric 

field was 250 Hz. Measurements of ε(T) were performed only on nancomposites because similar 

investigations on AHS [20] and empty PG [9] were carried out recently. In the latter case, it was 

shown that permittivity of PG does not depend significantly on temperature (in the range 120 – 

400 K) and frequency at least up to f = 106 Hz. 

The effect of hydrostatic pressure on the phase transitions in AHS component embedded 

in PG was studied using a piston-cylinder type vessel associated with a pressure multiplier. 

Pressure of up to 0.25 GPa was generated using pentane as the pressure-transmitting medium. 

The inaccuracy in the measurements of pressure and temperature using a manganin gauge and a 

copper-constantan thermocouple was about ±10-3 GPa and ±0.3 K, respectively. 

The dependences T1(p) and T2(p) were studied by measuring both permittivity and the 

differential thermal analysis (DTA) signal. In the former case, the measurements were preformed 

using the technique used in the studies at atmospheric pressure and described above. In the latter 

case, a germanium-copper thermocouple characterized by high sensitivity to change in 

temperature (~ 400 μV/K) was used [24]. Two junctions of the thermocouple were formed by 

soldering a copper wire 0.08 mm in diameter to a germanium bar of 0.5 × 2.0 × 5.0 mm3 

dimensions. A sample of 0.5 × 4.0 × 4.0 mm3 dimensions was glued onto one of the two 

junctions of a thermocouple. A quartz sample cemented to the other junction was used as a 

reference substance. To ensure the reliability of the results, the measurements were performed 

for both increasing and decreasing pressure cycles.  
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3. Results and discussion 

Fig. 3a depicts the temperature dependences of the specific heat, Cp(T), of PGs. Difference in the 

chemical composition of the borosilicate glasses studied is not significant and as a result one can 

see a rather good agreement between the data for the samples with average diameter of porous 5, 

46, and 320 nm in the whole temperature range examined, 100 – 300 K. The maximum 

difference between curves Cp(T) observed at about 100 K does not exceed several percents.  

 

Figure 3  Temperature dependences of: (a) the specific heat (curves 3 and 4 are shifted down at 

0.05 and 0.10 J×(g×K)-1, respectively); (b) the coefficient of linear thermal expansion of PGs. 

 

In contrast to the specific heat, thermal dilatation of PGs was found dependent on the 

pore size (Fig. 3b). The largest and smallest values of the coefficient of linear thermal expansion, 

α, are characteristic for PG5 and PG320, respectively, and differ from each other almost in two 

times. However, taking into account very small α value of PGs and as a result increased 

inaccuracy in their determination, one can think that the difference observed is not so large.  

All the α(T) dependences of PGs demonstrate a bump in rather wide temperature range 

~(220 - 290) K. We think that it can be associated with a small amount of water left in the pores 

because of ambient pressure of the α measurements. Due to a high vacuum (~10-6 mm Hg) in 

experimental chamber of the adiabatic calorimeter, no anomalies on the Cp(T) dependences of 

PGs were observed (Fig. 3a). 

 Experimental data obtained by adiabatic calorimeter for AHS+PG nanocomposites are 

shown in Fig. 4a. The temperature dependences of the heat capacity demonstrate pronounced 

anomalies associated with the phase transition P-1 ↔ Pc at T2. Due to small heat capacity 

change at T1 even in pure molten AHS [20] the anomalies of Cp(T) in nanocomposites in the 

region of the Pc ↔ P21/c transformation are decreased and smeared.  
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To obtain information on the phase transition entropies, the anomalous contribution, ΔCp, 

to the total heat capacity Cp was extracted. This procedure was carried out using a polynomial 

functions describing nonanomalous heat capacity of the nanocomposites consisted of lattice heat 

capacity of AHS and Cp(T) of PG, Creg = CL + CPG. For this aim, the experimental data Cp(T) of 

AHS+PG were taken far from the transition points in AHS component (T < 145 K and T > 273 

K) as it was done during the analysis of the heat capacity of bulk AHS [20]. In all the cases, the 

average deviation of the experimental data from the smoothed curves does not exceed 1.5%. The 

regular contributions into the total heat capacities of the nanocomposites are shown as a dashed 

line in Fig. 4a. One can see that the degree of the smearing as well as decreasing both anomalies 

changes with the pore size change.  

The total excess entropy ΣΔS = ΔS1 + ΔS2 associated with the successive phase 

transitions P-1 ↔ Pc ↔ P21/c was determined by integrating the area below the ΔCp/T versus T 

curves taking into account the mass of AHS in each of the nanocomposites. Fig. 4b shows the 

temperature behavior of ΣΔS in AHS confined in PGs. there is a significant decrease in ΣΔS 

values with decrease in pore size or nanoparticle size. This suggests a decrease in the disordering 

of structural elements in the initial phase P21/c of AHS confined in glass matrix. In addition, a 

strong smearing of the change in entropy at T1 and T2 was also observed which can be associated 

with heterogeneity of the sizes of pores as well as crystallites. 

 

Figure 4 (a) Temperature dependences of the heat capacity of the nanocomposites. The dashed 

lines are the regular heat capacities. (b) Behavior of the excess entropy associated with the P-1 

↔ Pc ↔ P21/c phase transitions in AHS component. 1- AHS+PG5, 2 - AHS+PG23, 3 - 

AHS+PG46, 4 - AHS+PG160, 5 - AHS+PG320, 6 – AHS. 

 

Linear thermal expansion coefficient α ≈ (27 – 70)×10-6 K-1 of AHS in the temperature 

ranges far from the phase transition points [17,20,25] is many times as much compared to α ≈ 
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(1–5)×10-6 K-1 of empty PGs (Fig. 3b). A large difference in α of the matrix and AHS can lead to 

an increase of α of AHS+PG compared to PGs and to the appearance of intrinsic elastic stress 

which will change at temperature variation. However, because PGs were filled with AHS at 

about 430 K, further cooling down to room temperature and below should be accompanied by 

more rapid decrease in the volume of AHS compared to PG and, as a result, tensile stresses can 

appear in the elastic interactions between two components which will increase upon cooling and 

decrease upon heating.  

The results of dilatometric measurements on nanocomposites are presented in Fig. 5. In 

the temperature regions of nonanomalous behavior of the thermal expansion, one can see a 

distinct difference between the α values for the different AHS+PG samples (Fig. 5a) which is 

due to the different filling factor, the nanoparticle size (Table 1) and, to a lesser extent, the 

difference in the α values of PGs (Fig. 3b). Indeed, the filling factor is, for example, about 38% 

and 90 % for AHS+PG5 and AHS+PG23, respectively, and this determines the smallest (2.5×10-

6 K-1) and largest (36×10-6 K-1) values of α at 300 K. 

Fig. 5b demonstrates the α(T) dependences of PG320 and AHS+PG320 revealing that a 

linear coefficient of the thermal expansion of the AHS+PG samples is several times greater than 

α of PG. These data are given by way of example, but are true for all the nanocomposites 

studied. Such an effect of AHS on the thermal expansion of nanocomposites can be associated 

only with a strong elastic interaction between the ferroelectric and the glass components. 

 

Figure 5 (a) Temperature dependences of the thermal expansion coefficient of the 

nanocomposites; 1 - AHS+PG5, 2 - AHS+PG23, 3 - AHS+PG46, 4 - AHS+PG160, 5 - 

AHS+PG320, 6 – PG46. (b) Comparison of α for AHS+PG46 and PG46. (c) Thermal dilatation 

around T2 in the AHS+PG160 sample with part of the melt on its surface. 
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Nanocomposites under study consist of an isotropic glass matrix and a crystalline 

ferroelectric with monoclinic symmetry in initial room temperature phase. To check the effect of 

an anisotropic component on the thermal expansion of a composite based on an isotropic matrix, 

we performed measurements of α in three directions on AHS+PG320: along two sides of the 

plate and perpendicular to its largest surface. The difference in α for different directions did not 

exceed 10-15 %. Taking into account the inaccuracy of dilatometric measurements, the 

distribution of AHS over the volume of the nanocomposites can be considered as statistically 

uniform with equiprobable orientations of crystalline nanoparticls in all directions. 

One of the features of the nanocomposites studied is that the temperatures, T1 and T2, of 

phase transitions are characterized by a nonmonotonic change with decreasing pore size. Fig. 6a 

depicts dependences of the both phase transition temperatures on the size of nanoparticles in 

comparison with the values for bulk AHS [20]. A reduction of dcryst from 500 nm down to 9 nm 

is accompanied by narrowing of the temperature region of ferroelectric Pc phase existence. 

 

Figure 6 Effect of the nanoparticle size of AHS on (a) phase transitions temperatures in 

nanocomposites AHS+PG and the change in (b) entropy ΔS2 (J/mol×K)) and (c) volume strain 

(ΔV/V)T2 at the P-1 ↔ Pc transformation  

 

The behavior of the temperatures of phase transitions in nanocomposites demonstrates 

very interesting general and specific features. At dcryst ≤ 100 nm, T1 and T2 strongly decrease 

with decreasing nanoparticle size. In all nanocomposites, the temperature of the phase transition 

Pc ↔ P21/c is lower than T1 in the bulk AHS. At that time, T2 in AHS+PG160 and AHS+PG320 

exceeds the bulk value (Fig. 6a). To verify the latter effect, we left part of the AHS melt on the 

surface of the AHS+PG160 sample and performed measurements of α(T). Fig. 5c demonstrates 

two peaks on the α(T) curve associated with the P-1 ↔ Pc phase transition in the AHS 

component and the bulk AHS on the surface of the sample. Thus, there really is a difference in 

the values of T2 in the “free” and confined AHS. Below we return to discussing the features 

above in the behavior of T1 and T2 in comparison with the effect of hydrostatic pressure. 
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 Experimental data on α = L-1×(ΔL/ΔT) are presented in Fig. 5a for a number of 

nanocomposites, where L is the linear dimension of the glass matrix plate. To obtain information 

on the change in the volume strain at the first-order transition P-1 ↔ Pc in the AHS component, 

we recalculated α into volume strain (ΔV/V)T2 taking into account the actual volume V of AHS in 

each sample. Fig. 6(b)-(c) show dependences of entropy ΔS2 and volume strain (ΔV/V)T2 on the 

nanoparticle size. It can be seen that at dcryst ≤ 100 nm, both values greatly decrease, just as it 

was found above for the temperatures T1 and T2. A rather large difference in the change in the 

volume strain at T2 in AHS (~ 1.5 %) and in composites even with rather large-sized particles (~ 

1.0 % in AHS+PG160) suggests that the glass matrix prevents the expansion of the ferroelectric 

component. This is also confirmed by the large difference in the values of α of glass matrices 

(Fig. 3), nanocomposites (Fig. 5) and bulk AHS [20] in temperature regions far from the phase 

transitions points. 

 The temperature dependence of the permittivity of some nanocomposites in comparison 

with ε(T) of bulk AHS [20] is shown in Fig. 7. The ε(T) curves for all samples show specific 

features characteristic of phase transitions of the first and second order: jump at T2 and more or 

less pronounced peak at T1. At a frequency of f < 1 kHz, a strong increase in ε was observed at T 

> 200 K, which decreased with increasing f to 1 MHz. The increase in the low-frequency 

permittivity in the nanocomposites with AHS and its strong frequency dependence were also 

observed in [9,10] and assumed to be associated  with the high proton mobility and the 

appearance of space charge polarization [10]. 

The temperatures of both phase transitions in all investigated nanocomposites are 

independent of frequency variation and agree well with those found in calorimetric 

measurements. 
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Figure 7 Temperature dependences of permittivity at different f  for (a) bulk AHS, (b) 

AHS+PG320, (c) AHS+PG46, (d) AHS+PG23. Insets show the permittivity behavior near T2 

  

 The values of both the step-wise change in ε at T2 and the ε peak at T1 were changed in 

irregular manner with decreasing pore size, which can be due to both the different filling factor 

of nanocomposites and the particle size (Table 1). In spite of the smeared ε anomalies in 

AHS+PG, the peak-like and step-wise behavior of permittivity at T1 and T2, respectively, at 

different frequencies as well as the data on the heat capacity, entropy and thermal expansion 

prove that the order of both transformations is kept in all the nanocomposites studied. 

Similar to studies on bulk ceramic AHS [20], we were not successful in examining the P–

E loops in the three phases of the composite AHS+PG46 (Fig. 8).  

 

Figure 8 (a)-(b) Dependence of permittivity on temperature for AHS+PG46 at different 

frequencies; (c)-(f) Dielectric hysteresis loops at the corresponding temperatures 

 

A rather strong relaxation in the appearance of P in the ferroelectric Pc phase was found which 

was confirmed by an almost linear dependence of polarization versus electric field existed far 

above T2 (Fig. 8(c)-(d)). The nonclassical shape of the loops interfered with the correct 

determination of the polarization. The most probable cause of this is associated with high 

electrical conductivity, which was observed even in AHS single crystals [26]. 

 The hydrostatic pressure effect on the successive phase transitions P21/c ↔ Pc ↔ P-1 in 

AHS and AHS+PG320 was studied by the DTA and permittivity measurements.  
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The permittivity of both samples measured at a frequency f = 1 kHz and different 

pressures is presented in Fig. 9. Comparison of these data with those shown in Fig. 7 indicates a 

strong smearing of the ε anomaly associated with the second order transformation P21/c ↔ Pc in 

AHS+PG320. 

 

 

Figure 9 Temperature dependences of permittivity for (a, b) AHS Melt and (c, d) AHS+PG320 

measured upon heating at different pressures. Insets show behavior of ε near T2 

 

Nevertheless, one can see that the increase in pressure results in a positive shift of T1 in 

composite like bulk AHS. At the same time, T2 decreases under external pressure in both 

samples. One can assume that the difference in the susceptibility of both temperatures to 

hydrostatic pressure is associated with different order and origin of the phase transitions in AHS, 

and as a result with different mechanism of structural distortions [18,27-29].. 

The results of the DTA measurements under pressure on bulk AHS and AHS+PG320 in 

the region of the P-1 ↔ Pc phase transition are shown in Fig. 10(a)-(b).  

 

Figure 10 (a, b) Anomalous component of the DTA signal near T2 at different pressures in AHS 

and AHS+PG320, respectively. (c, d) Entropy change ΔS2 at the first-order transition in bulk 

AHS and AHS+PG320, respectively. The lines in (c) and (d) represent linear fits 
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 The increase in pressure is accompanied by a significant reduction of the area under the 

DTA-signal peaks which is proportional to the entropy change ΔS2 associated with the phase 

transition at T2. The dependences ΔS2(p) can be considered as linear with very close values of the 

coefficient dΔS2/dp = 30 J×(mol×K×GPa)-1 and 35 J×(mol×K×GPa)-1 for AHS and 

AHS+PG320, respectively. Such a behavior of ΔS2(p) correlates with decrease of ΔS2 at the 

particle size reduction found in calorimetric experiments on the nanocomposites (Fig. 6b). Linear 

and strong nonlinear dependences ΔS2(p) and ΔS2(dcryst) show that decrease in the nanoparticle 

size is accompanied by strong nonlinear increase in the internal stress between the matrix and the 

AHS component. 

The data on the susceptibility of T1 and T2 to hydrostatic pressure in bulk AHS and some 

nanocomposites are summarized in Table 2. Due to opposite sign of baric coefficients (dT1/dp > 

0 and dT2/dp <0) the temperature interval of ferroelectric Pc phase existence is expanding under 

external pressure. 

 

Table 2 Comparison of susceptibility of phase transitions temperatures to hydrostatic pressure. 

(dTi/dp)exp and (dTi/dp)calc are experimental and calculated baric coefficients, respectively 

 

Sample 
dcryst 

(nm) 

T1 

(K) 

(dT1/dp)exp 

(K/GPa) 

T2 

(K) 

(dT2/dp)exp 

(K/GPa) 

(dT2/dp)calc 

(K/GPa) 

AHS Bulk 270.5 ± 0.2 90 ± 15 159.0 ± 0.2 - 123 ± 10 - 143 ± 20 

AHS+PG160 500 268.0 ± 0.2  161.0 ± 0.2  - 98 ± 15 

AHS+PG320 115 263.0 ± 0.5 115 ± 20 161.0 ± 0.2 - 88 ± 12 - 72 ± 15 

AHS+PG23 70 260.0 ± 1.0  156.0 ± 0.5  - 45 ± 15 

AHS+PG46 47 258.0 ± 0.5 86 ± 20 151.0 ± 0.5 - 78 ± 12 - 56 ± 15 

AHS+PG5 9 251.0 ± 2.0  150.0 ± 1.0  ~ (- 130) 

 

Taking into account the uncertainty in the experimental determination of (dT1/dp)exp, one 

can assume that this value changes insignificantly with a change of the nanoparticle size. More 

pronounced effect was observed in reduction of the (dT2/dp)exp magnitude depending on dcryst. 

Using the data on the entropy ΔS2 and strain (ΔV/V)T2 at the first order phase transition P-1 ↔ Pc 

(Fig. 6b), we have also evaluated the baric coefficient dT2/dp for all the samples under study in 

the framework of the Clausius-Clapeyron equation (Table 2). It is seen that the values  

 calc are decreased except AHS+PG5, where very large baric coefficient can be due to׀dT2/dp׀

large error in determination of the strain change (ΔV/V)T2. 
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The evaluation of the dT1/dp baric coefficient was not carried out because of strong 

smeared anomalies of heat capacity and coefficient of the thermal expansion at T1 in the 

nanocomposites.  

There is a good agreement of the T2 dependence on the pores size in AHS+PG observed 

in the present paper and in previous studies [9,10]. However, we found a rather strong decrease 

in T1 with decreasing dcryst contrary to [9,10] where this value was observed almost constant.  

 Let us compare the data on impact of the dcryst size and external pressure on the phase 

transitions temperatures in AHS+PG. One can suggest two mechanisms leading to the common 

and specific features in the behavior of T1 and T2. One of them is associated with a large 

difference in the nonanomalous thermal expansion of AHS and PG (αAHS > αPG) leading to the 

appearance of the tensile stresses in ferroelectric component. This mechanism probably plays the 

primary role in the samples with dcryst > 100 nm. Contrary to hydrostatic pressure effect (Table 

2), T1 and T2 in these nanocomposites were found decreased and increased, respectively, 

compared to bulk AHS. The value of internal pressure was evaluated using the data on T2 in 

AHS and AHS+PG160 and dT2/dp for AHS. It was found that the increase in T2 observed  in 

composite (2 K) at the absence of external pressure can be generated by negative pressure of 

about – 0.015 GPa. 

Another mechanism for changing the temperature of phase transitions in ferroelectric 

nanoparticles is associated with a change in the balance between the short and long interactions 

[30-32]. We assume that this mechanism plays a predominant role in composites with a small 

particle size, dcryst < 100 nm. Indeed, both T1 and T2 decrease with decreasing dcryst. The data 

presented in Table 2` support this point. 

 

4. Conclusions 

Heat capacity, thermal dilatation, susceptibility to hydrostatic pressure and dielectric properties 

of the series of the nanocomposites AHS+PG were investigated. In order to be correct analyzing 

experimental data, thermal properties of porous glasses were also studied for the first time. 

X-ray characterization has shown the formation of the dendrite clusters with the size 

exceeding the pore size in some AHS+PG like it was observed in the nanocomposites with the 

embedded NaNO2 [4]. 

A distinct difference between nonanomalous coefficients of the thermal expansion in 

AHS+PG samples is associated with different filling factor and nanoparticle size, dcryst. Rather 

small anisotropy of the α(T) dependences measured along three directions of the nanocomposite 

plate confirms the statistically homogeneous distribution of AHS over the volume of a matrix 

with equiprobable orientations of crystalline nanoparticles. 
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All investigated properties show anomalous behavior associated with the succession of 

the two phase transitions P-1 ↔ Pc ↔ P21/c which depends mainly on dcryst. The specific 

features of the phase transition temperatures T1 and T2 on dcryst are related for at least two  

reasons: tensile stresses in the nanocomposites and a size effect. The difference in the 

susceptibility of both temperatures to external pressure can be due to the different order and 

origin of the phase transitions in AHS, and as a result to different mechanism of structural 

distortions.  

A significant reduction in the value of the entropy ΔS2 and volume strain (ΔV/V)T2 at the 

P-1 ↔ Pc transformation with the dcryst decrease can be explained by decrease in disorder of 

structural elements in the initial phase P21/c of AHS confined in glass matrix. 

Effect of internal pressure associated with a decrease in dcryst and external hydrostatic 

pressure on permittivity are similar and accompanied with decrease in the anomalous ε changes 

at T1 and T2 which however can be reliably detected even in a sample of dcryst = 70 nm (d = 23 

nm). 

The reason of inability to measure polarization is the high electrical conductivity in the 

nanocomposites observed even in the single crystal of AHS [26]. 

Hydrostatic pressure leads to a significant linear reduction in the entropy associated with 

the phase transition P-1 ↔ Pc in AHS and AHS+PG320. The decrease in ΔS2 under hydrostatic 

pressure is consistent with the behavior of ΔS2 with the particle size reduction.  

We did not observe any effect of pores size and hydrostatic pressure on the order of both 

phase transitions in nanocomposites AHS+PG. 
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