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Abstract 9 

Interrelations of the yield variability of the main crops (wheat, barley, and oats) with 10 

hydrothermal regime and growth of conifer trees (Pinus sylvestris and Larix sibirica) in forest-steppes 11 

were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and 12 

mechanisms of climatic impact on plants productivity. It was found that amongst variables describing 13 

moisture supply, wetness index had maximum impact. Strength of climatic response and correlations 14 

with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency 15 

variability components of yield and tree-ring width have more pronounced relationships between each 16 

other and with climatic variables than their chronologies per se. Corresponding low-frequency 17 

variability components are strongly correlated with maxima observed after 1 to 5 years time shift of 18 

tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics 19 

reconstruction on the base of high-frequency variability component of the growth of pine and low-20 

frequency one of larch. 21 
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Introduction 25 

Hydrothermal regime of a territory is determined by hydrological and climatic factors that 26 

strongly influence the productivity of the both natural and agricultural ecosystems (Seneviratne et al. 27 

2006; Challinor et al. 2014; Lipper et al. 2014; Porter et al. 2014; Iizumi and Ramankutty 2016). 28 

Current climatic trends of global warming include not only increasing temperatures, but also changes 29 

of water balance and frequency/severity of droughts (Easterling et al. 2000; Rosenzweig et al. 2002, 30 

2014; Lobell et al. 2011; Mueller and Seneviratne 2012; Kattsov and Semenov 2014; Porter et al. 31 

2014; IPCC 2015). Its impact on ecosystems has certain pattern on global scale. In the low and 32 

medium latitudes warming leads to more frequent droughts and increases vulnerability of plants to 33 

moisture shortage. In the high latitudes with sufficient moisture level warming lengthens vegetative 34 

season and intensifies growth and development of plants. Overall, geographic range of most plants 35 

species and cultivars shifts to the higher latitudes (Bindi and Olesen 2011; Peltonen-Sainio et al. 2016; 36 

Wang et al. 2016). 37 

Understanding the regional mechanisms of this impact will provide more effective adaptation 38 

of the agriculture to the climate change, allowing to obtain more stable spatiotemporally yield 39 

(Zhirnova 2005; Hlavinka et al. 2009; Holman et al. 2017). Investigation of the yield dynamics can 40 

provide crucial information about its vulnerability to the climate change and estimation of the possible 41 

risks for food security (Myglan et al. 2007; Sauchyn et al. 2009; Pfister 2010; Qureshi et al. 2013; Wu 42 

et al. 2014; Huhtamaa et al. 2015; IPCC 2015). 43 

However this field of research is highly restricted by short cover periods of the factual data of 44 

instrumental environmental measurements and especially statistics of yield (Therrell et al. 2006; 45 

Sauchyn et al. 2009). Use of proxy records in various natural objects allows overcoming this limitation 46 

(Wang and Liu 2016; Huhtamaa and Helama 2017). In particular, tree-ring width (TRW) chronologies 47 

are available in many regions and reflect environmental variations on multi-centennial scale with 48 

annual/seasonal resolution (Fritts 1976). Both TRW and yield are productivity indicators of the 49 

terrestrial ecosystems and results of plants growth and development processes. Thus common patterns 50 

in their dynamics and climatic responses are to be expected (Vaganov 1989; Wu et al. 2014). There are 51 

several recent studies investigating these two variables jointly, including tree-ring based 52 

reconstructions of yield itself or climatic factors crucial for it (Myglan et al. 2007; Helama et al. 2013; 53 

Rygalova et al. 2014; Sun and Liu 2014; Huhtamaa et al. 2015; Yadav et al. 2015). 54 

The Republic of Khakassia (Siberia, Russia) is a typical example of a region in need of 55 

evaluation of the agricultural productivity. Small grain crops production is important part of the 56 

regional economy (Agroclimatic resources 1974; Surin and Lyakhova 1993). In this study we aimed to 57 

investigate variability of the main crops yield in Khakassia using instrumental environmental data and 58 

TRW chronologies of two prevalent conifer species in forest-steppe zone of the region. To achieve this 59 

goal the following objectives were set: (1) to reveal relationships between yield and TRW per se and 60 

between their components, (2) to analyze regional environmental factors and their extremes as driving 61 
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forces for plants productivity indicators and their relationships, and (3) to obtain and verify tree-ring 62 

based reconstruction of the yield. 63 

 64 

Materials and methods 65 

Study area 66 

The Republic of Khakassia is situated in the South Siberia, on the left bank of Yenisei river in 67 

its middle reaches. Montane part (south and east) of the republic belongs to the Altai-Sayan mountain 68 

system, whereas remaining territory is represented by plains of the Minusinsk Depression and is more 69 

appropriate for agriculture (Fig. 1 a) (Agroclimatic resources 1974). Climate of the study area is 70 

sharply continental (Alisov 1956). Minusinsk Depression is a wide valley surrounded by mountain 71 

ranges from all sides except North. Region is situated far from the ocean, but has broad Yenisei river 72 

with its two reservoirs (Chlebovich and Bufal 1976). The temperature during the vegetative season on 73 

plains increases from North to South. The precipitation decreases from the mountain ranges on the 74 

East and South towards the main rivers. 75 

In spring rapidly increasing temperature have high daily variation. It causes delay of the frost-76 

free period about 30-35 days after date of daily temperature crossing +5°C threshold. As a result spring 77 

frosts inhibit plant growth on the first development stages, thus shortening length of the vegetative 78 

season. The period of temperatures higher than +10°C starts around mid May and lasts up to 120 days. 79 

Precipitation has maximum in July-August, winter precipitation is scarce (maximal snow depth on 80 

plains is about 20 sm). Its interannual variation is very high, attaining 45-57% of mean value in 81 

summer and 56-90% of mean value in winter. Main reason of precipitation shortage is location of the 82 

Minusinsk Depression in the rain-shadow of mountain ranges. Due to this fact and spatiotemporally 83 

uneven precipitation the drought indices on the plains are unstable. 84 

Regional hydrographic network is also uneven. Most of the water bodies are concentrated in 85 

the mountain part; northern half of Minusinsk depression has the lowest hydrographic density. Water 86 

bodies are mainly rain-fed, thus their runoff (Q) depends on climatic conditions. Most of the rivers 87 

belong to the Yenisei basin. In the centre of region main rivers and their tributaries form the base of 88 

irrigational network (Territorial planning scheme 2015). 89 

Agrarian territory of Khakassia can be divided into three agroclimatic zones (Fig. 1): subtaiga 90 

zone with dark gray soils as narrow strip along mountain foothills, rain-fed steppes on chernozems in 91 

the north, and dry steppes on chestnut soils in the centre of republic, where irrigated agriculture is 92 

dominating (Agroclimatic resources 1974; Semenov et al. 2004). Agricultural area on the foothills is 93 

small (~4% of total area in republic) and has the least climatic impact, hence it was not investigated in 94 

the study. 95 

 96 

Data sources 97 
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Monthly data of average temperature (T) and sum of precipitation (P) for 1938-2012 were 98 

obtained from Shira and Minusinsk stations (Fig. 1). Two indices characterizing moisture regime were 99 

computed from T and P data: Selyaninov hydrothermal coefficient (𝐻𝑇𝐶 = 10 ∙ ∑𝑃 ∑𝑇⁄  for period of 100 

𝑇 > 10°𝐶, based on daily data) and wetness index (𝑊𝐼 = ∑ log 𝑃 ∑𝑇⁄ , based on monthly data) 101 

(Selyaninov 1958; Lei et al. 2014). Additionally monthly PDSI and SPEI indices were used from open 102 

datasets (Beguería et al. 2010; van der Schrier et al. 2013). Runoff of Yenisei and Abakan rivers (QY 103 

and QA) obtained from Ust-Abakan and Raikov stations respectively were used as hydrological 104 

characteristic. 105 

Crops yield measured as obtained grain weight per unit of sowing area (Y, kg/ha) was used as 106 

indicator of agricultural productivity (Therrell et al. 2006). Yield series averaged for every 107 

administrative district for 1960-2012 were obtained from unpublished records of the Federal State 108 

Statistics Service. Sufficient data are available for crops in total and for three main crops: spring 109 

wheat, spring barley and oats. For this study yield series of every crop were united into two zonal 110 

chronologies (Northern and Central) in regards to agroclimatic conditions and irrigation. 111 

The samples of Scots pine (Pinus sylvestris L. – PS) and Siberian larch (Larix sibirica Ledeb. – 112 

LS) were collected in the foothills forest-steppes (BER, TUI, BID, KAZ sites) and insular forest in 113 

steppe (MIN). The processing of samples, measurement and cross-dating of TRW were carried out 114 

using standard dendrochronological techniques (Cook and Kairiukstis 1990; Speer 2010). All 115 

individual series were standardized by fitting exponential/linear functions to remove age related trends. 116 

Then individual indices were combined into single standard chronology per site/species using bi-117 

weight robust mean (Cook and Krusic 2005). 118 

 119 

Mathematical and statistical techniques 120 

In this study we used following statistics of time series: arithmetic mean (mean), standard 121 

deviation (stdev), variation coefficient (𝑣𝑎𝑟 = 𝑠𝑡𝑑𝑒𝑣 𝑚𝑒𝑎𝑛⁄ ), sensitivity coefficient (for time series X 122 

it is 𝑠𝑒𝑛𝑠 = mean(2 ∙ |𝑋𝑡 − 𝑋𝑡−1| (𝑋𝑡 + 𝑋𝑡−1)⁄ )), first-order autocorrelation coefficient (ar-1). For 123 

TRW chronologies also average interseries correlation coefficient (r-bar) was calculated to check 124 

quality (Fritts 1976; Wigley et al. 1984; Cook 1985). 125 

Pearson’s correlation coefficients were used to evaluate relationships between time series.  126 

High-frequency component of variation was calculated as first differences (for time series X in year t 127 

first difference is ∆𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1). This approach was successfully used in some previous analyses 128 

of climate-yield relationships (Nicholls 1997; Lobell et al. 2005; Lobell and Field 2007). Low-129 

frequency component of variation was estimated as time series smoothed with 5-year moving average 130 

centered to the middle year (𝐴𝑣5𝑋𝑡 = mean(𝑋𝑡−2, ⋯ , 𝑋𝑡+2)). 131 

Linear regression functions were used for reconstruction of the crops yield variation 132 

components. Quality of reconstruction models was estimated with the following statistics: coefficient 133 
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of multiple correlation (R), coefficient of determination (R2), adjusted coefficient of determination 134 

(R2
adj), Fisher test (F), significance level p and standard error of estimation (SEE).  135 

 136 

Results 137 

Chronologies and relationships between them 138 

Four regional crops yield chronologies were developed for each zone: crops in total – CrN and 139 

CrC in Northern and Central zones respectively, wheat – WrN and WrC, barley – BrN and BrC, oats – 140 

OrN and OrC. Their statistics are shown in Table 1. In the study area wheat yield has the highest mean 141 

values, and oats yield has the lowest ones. There are no significant differences in mean yield between 142 

zones. Variability of yield reaches 38-51% of mean values with substantial proportion of year-to-year 143 

changes, indicated by high sensitivity (𝑠𝑒𝑛𝑠 = 0.39 − 0.54). Nevertheless, yield chronologies have 144 

also significant autocorrelations. The TRW chronologies range from 124 to 272 years (Table 1). TRW 145 

has lower variability per se and sensitivity (𝑠𝑒𝑛𝑠 = 0.19 − 0.47), but higher autocorrelation than 146 

yield. 147 

Within each zone yields of different crops are highly correlated (𝑟 = 0.80 − 0.95 in Northern 148 

zone and 𝑟 = 0.81 − 0.96 in Central zone). The correlations between zones are moderate (𝑟 = 0.49 −149 

0.78) (Online Resource Table S1). The correlations between TRW chronologies are low to moderate. 150 

The highest correlations are observed within one site (r = 0.40 − 0.71). Most of yield-TRW 151 

relationships are weak, 50% of correlations are not significant on level 𝑝 < 0.05. However, we can 152 

note some relatively high correlations both in Northern (yield and BER_PS have 𝑟 = 0.34 − 0.54, 153 

yield and BID_LS have 𝑟 = 0.35 − 0.47) and Central zone (yield and BER_LS have 𝑟 = 0.45 − 0.63, 154 

yield and BER_PS have 𝑟 = 0.36 − 0.47). 155 

Comparison of the smoothed TRW and yield series (Fig. 2 a-f) was performed by cross-156 

correlation, i.e. correlations were calculated with different time shift (lag) of TRW (Online Resource 157 

Fig. S1). More pronounced similarity of low-frequency variation is revealed between yield and TRW of 158 

larch: BID_LS has the highest correlation with the yield in Northern zone, BER_LS has the highest 159 

one in Central zone, and TUI_LS has second-best correlations with the yield in both zones. The 160 

highest values of cross-correlation coefficients are observed with lag +1 to +2 years for BID_LS (𝑟 =161 

0.54 − 0.79) and for BER_LS (𝑟 = 0.66 − 0.92), and with lag +3 to +5 years for TUI_LS (𝑟 =162 

0.43 − 0.65 for Northern zone and 𝑟 = 0.54 − 0.80 for Central zone). The cross-correlations are 163 

quasiperiodic. The distance between consequent maxima / consequent minima for cross-correlations of 164 

yield with BID_LS is 19 to 20 years and for cross-correlations of yield with BER_LS and TUI_LS is 165 

26 to 33 years. Relationships between smoothed series of yield and pine TRW are considerably less 166 

pronounced. The extremal cross-correlations are unstable and not exceeding 0.50. Smoothed yield 167 

series correlations between themselves are high, viz., 𝑟 = 0.86 − 0.97 in Northern zone, 𝑟 = 0.90 −168 

0.98 in Central zone, and 𝑟 = 0.57 − 0.87 between zones. 169 
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 170 

Climatic response in the chronologies 171 

Significant correlations between TRW chronologies and monthly temperatures and precipitation 172 

were observed from previous July to current July (Online Resource, Fig. S2). Climatic response of all 173 

TRW chronologies has similar pattern. During the previous July-September and current May-July, 174 

response of TRW on P is positive and response on T is negative. Also there is positive response on both 175 

factors in the late autumn. Strength of the climatic response varies between species. 176 

Crops yield chronologies have significant climatic response only during May-July (period of 177 

crops growth and development in the region). Therefore this period was selected for comparison of 178 

influence of the ecological factors on the natural and agro-ecosystems productivity (Table 2). 179 

Temperatures have strong negative relationships with crops yield in both zones. In Northern zone yield 180 

have also high positive correlations with precipitation. All drought indices have significant correlations 181 

with yield too, especially high in Northern zone. The wetness index has the strongest relationship with 182 

yield amongst ecological variables. The Yenisei runoff has no relationships with yield, whereas the 183 

Abakan runoff’s correlations with yield are weak but partially significant. Correlations of TRW 184 

chronologies with ecological conditions of May-July are weaker than yield’s ones. But there are 185 

similar patterns of strongest reaction on precipitation and WI and minimal response on rivers runoff. 186 

Overall pine has more pronounced dependence of growth on May-July conditions than larch. 187 

 188 

Extremal events and plants productivity 189 

As unfavorable extremal events (e.g. droughts) we considered years when ecological factors in 190 

May-July have high deviations from mean values (Online Resource Table S2). Specifically, 191 

combination of low moisture supply and high temperatures was observed in 1945, 1965 and 1999; in 192 

1974 and 1981 precipitation and drought indices also were low but temperatures were on average 193 

level. These years were characterized by significant decrement of the tree growth, especially for pine. 194 

Crop failures were observed too with the most pronounced ones in 1965 and 1999. In 1994 high 195 

temperatures and normal moisture supply resulted in poor harvest and some low TRW values. Two-196 

year drought in 1945-1946 was associated with low TRW values, but yield chronologies do not cover 197 

these years. 198 

 199 

First differences of time series 200 

Correlation analysis of the first differences of yield showed relationships and patterns similar to 201 

the chronologies per se (Online Resource Table S3): for ΔY correlations between each other in 202 

Northern zone 𝑟 = 0.75 − 0.94, in Central zone 𝑟 = 0.77 − 0.95, and between zones  𝑟 = 0.34 −203 

0.62. For ΔTRW it is true as well. They have maximal correlations within the site (𝑟 = 0.43 − 0.60) 204 

and basically the same range of correlations among themselves as TRW chronologies per se. Though 205 

correlations between ΔY yield and ΔTRW are substantially higher than between their chronologies, 206 
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81% of them are significant on level 𝑝 < 0.05 (Online Resource Fig. S3). These relationships are more 207 

pronounced for TRW of pine (Fig. 2 g, h). ΔY series in Northern zone have maximal correlations with 208 

ΔMIN_PS (𝑟 = 0.47 − 0.61) and the second-best correlations with ΔKAZ_PS (𝑟 = 0.35 − 0.44). In 209 

Central zone ΔY series have maximal correlations with ΔKAZ_PS (𝑟 = 0.51 − 0.62). 210 

Relationships of ΔY and ΔTRW with first differences of environmental factors are also higher 211 

than corresponding relationships of original time series (Table 2). For example, ΔY has higher 212 

correlations with first differences of T, PDSI, SPEI and rivers runoff; ΔTRW has higher correlations 213 

with first differences of T, WI, PDSI and QA. Amongst indicators of moisture regime WI has closest 214 

relationship with both TRW and yield when first differences are considered, as well as for original time 215 

series. 216 

 217 

Tree-ring based reconstructions of the crops yield 218 

Yield series have the highest correlations with pine TRW in first differences and with larch 219 

TRW after smoothing. Therefore we made separate tree-ring based models of hith- and low-frequency 220 

variability of yield. Detailed procedure of reconstruction is presented in Online Resource.  221 

For high-frequency yield variation component the highest statistics of regression model were 222 

retrieved with using MIN_PS chronology for Northern zone and KAZ_PS chronology for Central 223 

zone. Due to relatively short cover period of MIN_PS we also constructed estimations for Northern 224 

zone on base of KAZ_PS chronology, which have ~80 year longer cover period but lower statistics 225 

(Table 3, Online Resource Fig. S4). For low-frequency yield variation component the highest statistics 226 

were retrieved with using smoothed BID_LS and TUI_LS for Northern zone, and BER_LS and 227 

TUI_LS for Central zone. For Northern zone also model on the base of BER_LS and TUI_LS was 228 

constructed, which have ~150 year longer cover period but lower statistics (Table 3, Online Resource 229 

Fig. S5). 230 

Both yield and TRW chronologies contain fluctuations of different frequency. Thus a 231 

hypothesis was postulated that these two types of models could be used together to obtain one 232 

combined model of yield dynamics estimation as a whole. We obtained combined models with cover 233 

periods 122 and 237 years for Northern zone and 238 years for Central zone (Table 3, Fig. 3). 234 

Combined models with shorter cover period for Northern zone have higher statistics then 235 

corresponding ΔY models. At the same time most statistics of combined models with longer cover 236 

period for Northern zone are similar to ones of corresponding ΔY models, but F-test and significance 237 

level are lower due to higher amount of predictors. For Central zone statistics of combined models are 238 

lower than ones of ΔY models. 239 

 240 

Verification of reconstruction 241 

Combined models have the same extremes as actual yield chronologies within observation 242 

period. There are set of years of extremal low yield outside the observation period which are 243 
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confirmed by regional data from other sources (Fig. 3). According to instrumental data, moisture 244 

deficit was observed in 1910, 1917, 1945-46 and 1951. Low yields of all three main crops were 245 

registered at the state variety testing stations of Khakassia in 1945-46, 1949 and 1951 (Zhirnova 2005). 246 

There are also confirming historic evidences in the South of Siberia (Myglan 2010). For 247 

instance, in the opinion of Vatin (1922), "since 1837 crop failures have begun in the Yenisei Gubernia 248 

and completely ruined it in 2-3 years". There is also stated that in 1838 "sown cereals and meadow 249 

grass have a mediocre growth on the occasion of the absence of rains until this time"; in 1852 "worms 250 

appeared in the crops. During the crops ripening there was no rain; the yield was less than in previous 251 

1851 year". In the work of Latkin (1890) the repeated crop failures in the Minusinsk depression during 252 

1856-1868 were described: "since 1856 due to repeated poor harvest and gold mining, prices began to 253 

rise (up to 60 kopecks for pood of rye flour and oats)"; "in 1868 again prices have risen, thanks to 254 

some years with poor harvest". In a monograph of Butanayev (2002) drought in Khakassia in 1900-255 

1902 was mentioned: "A severe drought gave rise to lack of fodder. Up to half of draught horses have 256 

died in the Abakan and Askiz establishments".  257 

 258 

Discussion 259 

Comparison of the plants productivity indicators response to the hydrothermal regime 260 

characteristics showed that the wetness index WI most explicitly expresses limiting by moisture 261 

supply. Its advantage is that this index not only combines the impact of precipitation as a source of 262 

moisture and temperature as a withering factor, but also highlights the contribution of drought events, 263 

as it contains logarithm of precipitation (Lei et al. 2014). The relationships between productivity 264 

indicators and river runoff are weak primarily due to their large catchment basins, especially for the 265 

Yenisei river. The Abakan river is supplied by the precipitation in the Minusinsk depression to a 266 

greater extent, and is the main water source for the irrigation system. These facts ensure the 267 

pronounced response to QA. Irrigation also significantly weakens yield climatic response on 268 

precipitation in the Central zone. 269 

As many other regions, study area characterizes by frequent simultaneous temperature raising 270 

and precipitation deficit (Bazhenova and Tyumentseva 2010; Prasad et al. 2011; Nouri et al. 2017), 271 

Our analysis showed that both indicators of plant productivity are accurately capturing such 272 

unfavorable combinations, as well as extremes of one of these factors. It means that drought events 273 

lead to synchronicity of negative extremes in yield and TRW, which is partially reason for the positive, 274 

though not always significant, correlations between them. Therefore, it should be expected that the 275 

TRW chronologies and the yield dynamics reconstructed on their basis will allow also restoring 276 

regional climatic extremes history (Touchan et al. 2016).Growth and development of plants has 277 

common regularities due to the unity of resources and physiological mechanisms ( e.g. nutrition, 278 

respiration, water balance), so we should expect them to be limited by the same environmental factors 279 

typical for the semi-arid continental climatic zone (Myglan et al. 2007; Sun and Liu 2014). Moreover, 280 
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both grains for agricultural crops and wood for trees are the main targets of resources storage processes 281 

during their growth and development. For instance, wheat has about 50% ratio of grain mass to above 282 

ground biomass (Schulze et al. 2005). Also one more common trait is adaptation to the moisture 283 

deficit.  Climatypes of the tree species in forest-steppe are adapted to the semiarid conditions by 284 

natural selection. At the same time, regional crop cultivars are adapted to these conditions by human 285 

activity, i.e. breeding. 286 

Differences in the variability of yield and TRW chronologies follow primarily from their life 287 

forms and cycles. Most of yield variability of crops, as annual plants, is due to current conditions, 288 

including high-frequency climatic fluctuations. Significant autocorrelation is associated with using the 289 

previous harvest as source of grain for sowing, because grain quality usually has positive relationship 290 

with yield (Ozturk and Aydin 2004; Meng et al. 2016). Long-term yield variability is influenced by 291 

both climatic trends and changes in farming practices and cultivars. Conifer trees as perennials, 292 

especially evergreens, are characterized by stronger autocorrelation and less sensitivity of growth. On 293 

the one hand, the variability of tree growth is constrained by the slowness of changes in morphometric 294 

parameters (the size and structure of stem&root system) determining the access to resources. On the 295 

other hand, woody plants are characterized by active storage of nutrients for using in the next season. 296 

Moreover, evergreen trees have needles of previous years participating in photosynthesis processes 297 

(Chapin et al. 1990; Schulze et al. 2005). Thus trees respond to the hydrothermal regime not only of 298 

the current vegetative season, but also of the previous months. In regard to long-term tree growth 299 

dynamics, the impact of human activity is much less pronounced than in agroecosystems. Thereby the 300 

long-term variation of TRW is mainly due to a combination of climatic trends, aging and changes in the 301 

stand structure. Also it is necessary to take into account using of standardized TRW data, from which 302 

most of the age trend was removed during processing. Since the crops yield does not have such trends, 303 

its standardizing was not necessary.  304 

As a result of all aforementioned differences, despite the similarity of the growth conditions 305 

TRW chronologies per se have limited relationships with crops yield, as well as with climate of May-306 

July. Therefore instead of head-on approach we proposed other methods to make tree-ring-based yield 307 

reconstruction. Separation of plants production variability into high- and low-frequency components 308 

and their analysis allowed us to circumvent these restrictions. 309 

Low-frequency variation in the yield and TRW has much in common due to its dependence on 310 

climatic trends. More pronounced similarity with yield is observed in larch TRW smoothed series then 311 

in pine ones. It might be caused by need to re-grow all needles every spring for larch. Pine as 312 

evergreen has needles with overlapping life spans, which complicates autocorrelation component and 313 

low-frequency variation of growth in general. The delay in decadal oscillations of the tree growth in 314 

comparison with crops is associated with the more pronounced autocorrelation described above. 315 

Main non-climatic factors affecting variation of the both plant productivity indicators (the age 316 

changes of trees and the development of agricultural technologies) are low frequency. Thus transition 317 
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to the first differences reduces their contribution and highlights role of the climate and the hydrological 318 

regime, as they have considerable high-frequency variation component. It should be noted that, unlike 319 

the smoothed series, the similarity between year-to-year dynamics of pine growth and the crops yield 320 

is more pronounced. This is due to the fact that the response to the May-July conditions is higher for 321 

pine than for larch. 322 

As both components of yield variability have more close relationships with the tree growth than 323 

yield chronologies per se, we can reconstruct these components separately. Both reconstructions have 324 

their advantages and disadvantages. The reconstructed first differences easily allow one-year crops 325 

failures to be revealed, but do not allow to receive information about longer periods of high/low yield. 326 

Conversely, the reconstruction of the smoothed series describes long-term trends well, but there is no 327 

information about the extreme years. Therefore, it was proposed to reconstruct the entire yield 328 

variability by combining these two models. Use of a recursive equation for obtaining yields from the 329 

model of the first differences leads to the accumulation of errors in long-term trends. To erase these 330 

errors, low-frequency variation was completely removed from the resulting series by subtracting their 331 

smoothed series. Then year-to-year yield fluctuations were threaded onto the reconstructed separately 332 

long-term oscillations. The advantage of this approach in our case is also in the use of tree-ring 333 

chronologies of different species and habitats, which reduces the correlations between predictors. 334 

The obtained yield estimations are quite close to the factual series, especially extremal values. 335 

However, the limits of the TRW chronologies cover periods restricting the length of the most 336 

qualitative yield reconstruction in the Northern zone. The use of longer chronologies makes it possible 337 

to significantly extend this period at the expense of the quality reducing. Despite this, the relevance of 338 

models is confirmed by their comparison with other data sources –instrumental records, historical 339 

documents, and yield data of regional variety testing stations. 340 
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Table 1. Statistical characteristics of crops yield and TRW chronologies 1 

 Crops yield Tree-ring width 

Nothern zone Central zone Pinus sylvestris Larix sibirica 

CrN WrN BrN OrN CrC WrC BrC OrC BER PS BID PS MIN PS KAZ PS BER LS TUI LS BID LS KAZ LS 

N, years 53 43 43 43 53 33 43 43 257 164 166 246 272 294 124 178 
period, 

years 

1960- 

2012 

1970- 

2012 

1970- 

2012 

1970- 

2012 

1960- 

2012 

1980- 

2012 

1970- 

2012 

1970- 

2012 

1752- 

2008 

1849- 

2012 

1847- 

2012 

1767- 

2012 

1737- 

2008 

1719- 

2012 

1889- 

2012 

1835- 

2012 

Number 
of trees 

- - - - - - - - 14 15 40 23 14 57 16 20 

mean* 9.34 10.40 10.00 9.27 9.73 11.31 9.87 9.76 - - - - - - - - 

stdev* 4.06 3.96 4.68 4.56 4.45 5.57 5.00 4.46 0.29 0.35 0.23 0.43 0.32 0.47 0.32 0.62 
var* 0.43 0.38 0.47 0.49 0.46 0.49 0.51 0.46 - - - - - - - - 

sens 0.43 0.39 0.48 0.54 0.45 0.39 0.52 0.51 0.25 0.33 0.19 0.40 0.30 0.43 0.26 0.47 

ar-1 0.36 0.41 0.44 0.34 0.39 0.62 0.40 0.27 0.48 0.44 0.45 0.51 0.44 0.49 0.50 0.62 
r-bar - - - - - - - - 0.56 0.51 0.43 0.60 0.58 0.57 0.42 0.48 

*mean and stdev of the crops yield are in 102 kg/ha; standard TRW chronologies have mean = 1 and var = stdev 2 

 3 

Table 2. Correlation coefficients of crops yield and TRW chronologies with climatic and hydrological 4 

variables, averaged for the crops growth period – May-July (calculated for time series / chronologies 5 

per se and for their first differences) 6 

 

T P НTC WI PDSI SPEI QE QA  ΔT ΔP ΔНTC ΔWI ΔPDSI ΔSPEI ΔQE ΔQA 

time series per se first differences 

CrN -0.48 0.48 0.56 0.72 0.50 0.52 0.20 0.26 ΔCrN -0.57 0.32 0.41 0.67 0.70 0.56 0.32 0.29 
WrN -0.54 0.38 0.46 0.66 0.31 0.32 0.17 0.21 ΔWrN -0.58 0.23 0.30 0.56 0.48 0.40 0.26 0.28 

BrN -0.41 0.58 0.63 0.68 0.48 0.55 0.33 0.40 ΔBrN -0.43 0.47 0.52 0.65 0.63 0.58 0.44 0.40 

OrN -0.44 0.57 0.63 0.71 0.48 0.57 0.23 0.34 ΔOrN -0.43 0.46 0.52 0.65 0.61 0.57 0.32 0.31 

CrC -0.58 0.30 0.40 0.61 0.41 0.45 0.20 0.28 ΔCrC -0.59 0.45 0.51 0.66 0.55 0.52 0.39 0.54 

WrC -0.62 -0.02 0.12 0.45 0.14 0.16 0.22 0.14 ΔWrC -0.63 0.18 0.26 0.49 0.35 0.22 0.32 0.51 

BrC -0.56 0.11 0.21 0.43 0.29 0.27 0.08 0.23 ΔBrC -0.63 0.29 0.36 0.53 0.39 0.35 0.24 0.58 
OrC -0.53 0.26 0.36 0.56 0.37 0.42 0.21 0.28 ΔOrC -0.46 0.37 0.42 0.58 0.49 0.43 0.38 0.55 

BER PS -0.32 0.26 0.25 0.37 0.15 0.21 -0.01 0.22 ΔBER PS -0.45 0.33 0.33 0.50 0.26 0.25 0.00 0.37 

BID PS -0.21 0.33 0.23 0.29 0.32 0.26 0.20 0.37 ΔBID PS -0.36 0.09 0.04 0.25 0.36 0.16 0.31 0.50 

MIN PS -0.35 0.45 0.47 0.51 0.40 0.38 0.27 0.45 ΔMIN PS -0.46 0.45 0.49 0.61 0.63 0.43 0.46 0.58 
KAZ PS -0.16 0.17 0.19 0.27 0.08 0.17 0.12 0.54 ΔKAZ PS -0.36 0.23 0.29 0.45 0.46 0.20 0.32 0.70 

BER LS -0.36 0.28 0.17 0.36 0.16 0.19 -0.21 0.04 ΔBER LS -0.32 0.25 0.16 0.31 0.14 0.14 -0.22 0.22 

TUI LS -0.14 0.35 0.17 0.22 0.29 0.24 -0.24 0.11 ΔTUI LS -0.27 0.32 0.20 0.31 0.32 0.16 0.03 0.31 
BID LS -0.16 0.32 0.25 0.28 0.41 0.27 0.18 0.18 ΔBID LS -0.15 0.10 0.06 0.17 0.40 0.21 0.19 0.36 

KAZ LS -0.06 0.01 0.00 0.12 -0.10 0.03 0.16 0.17 ΔKAZ LS -0.11 0.02 0.03 0.20 0.34 0.03 0.28 0.53 

T – temperatures; P – precipitation; HTC – hydrothermal coefficient of Selyaninov; WI – wetness index (Lei et al. 7 

2014); QE – runoff of Yenisei river; QA – runoff of Abakan river. 8 

Marked with shade correlation coefficients are significant at p<0.05 9 
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Table 3. Regression reconstruction models of crops yield high- and low- frequency variation 11 

components and combined models on base of TRW chronologies and their statistical characteristics 12 

Yield models Function / predictors R R2 R2
adj F p SEE Period 

high-frequency variability component 

ΔCrN1 

ΔWrN1 

ΔBrN1 
ΔOrN1 

-1.31 + 13.16·MIN_PS – 11.63·MIN_PS-1 

-3.16 + 13.55·MIN_PS – 10.18·MIN_PS-1 

-1.38 + 13.89·MIN_PS – 12.50·MIN_PS-1 
-0.58 + 12.58·MIN_PS – 12.00·MIN_PS-1 

0.65 

0.67 

0.63 
0.56 

0.42 

0.45 

0.40 
0.31 

0.40 

0.43 

0.36 
0.26 

17.8 

16.2 

9.5 
6.5 

<0.001 

<0.001 

<0.001 
0.004 

3.56 

3.27 

4.05 
4.56 

1848-2012 

ΔCrN2 

ΔWrN2 

ΔBrN2 
ΔOrN2 

0.21 + 6.45·KAZ_PS – 6.50·KAZ_PS-1 

-0.19 + 6.24·KAZ_PS – 5.92·KAZ_PS-1 

1.10 + 5.31·KAZ_PS – 6.51·KAZ_PS-1 
0.74 + 5.49·KAZ_PS – 6.32·KAZ_PS-1 

0.60 

0.60 

0.51 
0.48 

0.36 

0.36 

0.26 
0.23 

0.34 

0.33 

0.22 
0.19 

14.0 

11.1 

6.9 
5.9 

<0.001 

<0.001 

0.003 
0.006 

3.72 

3.53 

4.42 
4.75 

1768-2012 
ΔCrC 

ΔWrC 
ΔBrC 

ΔOrC 

-0.03 + 9.29·KAZ_PS – 9.14·KAZ_PS-1 

0.43 + 10.41·KAZ_PS – 10.71·KAZ_PS-1 
-0.39 + 9.47·KAZ_PS – 8.84·KAZ_PS-1 

0.45 + 9.18·KAZ_PS – 9.61·KAZ_PS-1 

0.80 

0.92 
0.72 

0.75 

0.64 

0.85 
0.51 

0.56 

0.62 

0.84 
0.49 

0.54 

42.7 

82.9 
20.6 

25.3 

<0.001 

<0.001 
<0.001 

<0.001 

3.04 

1.96 
3.92 

3.63 

low-frequency variability component 

Av5Y_N1 
Av5Y_N2 

-1.09 + 3.50·Av5TUI_LS4 + 7.39·Av5BID_LS1 
3.55 + 4.17·Av5TUI_LS3 + 1.91·Av5BER_LS2 

0.81 
0.62 

0.66 
0.39 

0.65 
0.36 

43.1 
14.1 

<0.001 
<0.001 

1.52 
2.05 

1890-2009 
1737-2004 

Av5Y_C -2.40 + 4.02·Av5TUI_LS5 + 8.54·Av5BER_LS1 0.85 0.73 0.72 59.5 <0.001 1.67 1734-2005 

combined models 

CrN 
WrN 

BrN 

OrN 

MIN_PS, MIN_PS-1, Av5TUI_LS4, Av5BID_LS1 

0.76 
0.68 

0.70 

0.68 

0.57 
0.46 

0.49 

0.46 

0.53 
0.40 

0.43 

0.40 

15.1 
7.4 

8.5 

7.6 

<0.001 
<0.001 

<0.001 

<0.001 

2.82 
3.15 

3.65 

3.83 

1890-2011 

CrN 
WrN 

BrN 

OrN 

KAZ_PS, KAZ_PS-1, Av5TUI_LS3, Av5BER_LS2 

0.55 
0.60 

0.54 

0.54 

0.30 
0.36 

0.29 

0.29 

0.23 
0.27 

0.20 

0.20 

4.3 
4.2 

3.1 

3.1 

0.006 
0.009 

0.030 

0.030 

3.83 
3.71 

4.65 

4.52 

1768-2004 

CrC 

WrC 

BrC 
OrC 

KAZ_PS, KAZ_PS-1, Av5TUI_LS5, Av5BER_LS1 

0.56 

0.75 

0.59 
0.53 

0.31 

0.56 

0.35 
0.28 

0.25 

0.47 

0.27 
0.19 

4.7 

6.6 

4.2 
3.1 

0.003 

0.001 

0.008 
0.031 

4.05 

4.33 

4.38 
4.20 

1768-2005 
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Fig. 1 Study region. On the map (a) Northern zone is marked with light shade, Central zone is 

marked with dark shade. Territory suitable for agriculture is marked with hatching. Climatic diagrams 

(b) of mean air temperature and amount of precipitation for every month are average for all period of 

instrumental measurements 
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Fig. 2 Low- and high-frequency variation components of the crops yield and TRW 

chronologies: smoothing (Av5 – 5-year moving average) of yield chronologies, where CrN/CrC – 

crops in total, WrN/WrC – wheat, BrN/BrC – barley, OrN/OrC – oats regional yield series for 

Northern (a) and Central (b) zones respectively; smoothing (Av5) of TRW chronologies, low-

frequency variation of which is the best-fitting for Northern (c) and Central (d) zones; comparison of 

the yield and TRW low-frequency variation in Northern (e) and Central (f) zones; high-frequency 

variation (first differences) of yield in comparison with the best-fitting high-frequency TRW variation 

in Northern (g) and Central (h) zones 
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Fig. 3 Combined tree-ring based yield reconstruction models, actual series of CrN and CrC 

yield chronologies and evidences of droughts and crop failures from other sources. In Northern zone 

two models were constructed with different length and quality: best-fitted model (a) and second best-

fitted model (b); in Central zone one model (c) was constructed 

0

5

10

15

20

25

30 a

0

5

10

15

20

25

30 b

0

5

10

15

20

25

30

1
7
6

5
1

7
7

0
1

7
7

5
1

7
8

0
1

7
8

5
1

7
9

0
1

7
9

5
1

8
0

0
1

8
0

5
1

8
1

0
1

8
1

5
1

8
2

0
1

8
2

5
1

8
3

0
1

8
3

5
1

8
4

0
1

8
4

5
1

8
5

0
1

8
5

5
1

8
6

0
1

8
6

5
1

8
7

0
1

8
7

5
1

8
8

0
1

8
8

5
1

8
9

0
1

8
9

5
1

9
0

0
1

9
0

5
1

9
1

0
1

9
1

5
1

9
2

0
1

9
2

5
1

9
3

0
1

9
3

5
1

9
4

0
1

9
4

5
1

9
5

0
1

9
5

5
1

9
6

0
1

9
6

5
1

9
7

0
1

9
7

5
1

9
8

0
1

9
8

5
1

9
9

0
1

9
9

5
2

0
0

0
2

0
0

5
2

0
1

0

c

Y
, 

1
0

2
 k

g
/h

a
 

Fig3



  

Supplementary Material - corrected

Click here to access/download
Electronic Supplementary Material

Babushkina et al - Supplementary.pdf

http://www.editorialmanager.com/ijbm/download.aspx?id=88519&guid=b2e719dd-4ab5-457f-ac2e-04f3e49b4835&scheme=1


 

1 
 

Estimation of pastPast crops yield dynamics reconstruction from tree -ring chronologies in the 1 

forest-steppe zone based on low- and high-frequency components 2 

 3 

Elena A. Babushkina1, Liliana V. Belokopytova1, Santosh K. Shah2 and Dina F. Zhirnova1 4 

1Khakass Technical Institute, Siberian Federal University, 27 Shchetinkina St., Abakan, 655017, Russia 5 

2Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, 226007, India 6 

Corresponding author: Elena A. Babushkina, <babushkina70@mail.ru> 7 

 8 

Abstract 9 

Interrelations of the yield variability of the main crops (wheat, barley, and oats) with 10 

hydrothermal regime and growth of conifer trees (Pinus sylvestris and Larix sibirica) in forest-steppes 11 

were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and 12 

mechanisms of climatic impact on plants productivity. It was found that amongst variables describing 13 

moisture supply, wetness index had maximum impact. Strength of climatic response and correlations 14 

with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency 15 

variability components of yield and tree-ring width have more pronounced relationships between each 16 

other and with climatic variables than their chronologies per se. Corresponding low-frequency 17 

variability components are strongly correlated with maxima observed after 1 to 5 years time shift of 18 

tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics 19 

reconstruction on the base of high-frequency variability component of the growth of pine and low-20 

frequency one of larch. 21 
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Introduction 25 

Hydrothermal regime of a territory is determined by hydrological and climatic factors that 26 

strongly influence the productivity of the both natural and agricultural ecosystems (Seneviratne et al. 27 

2006; Challinor et al. 2014; Lipper et al. 2014; Porter et al. 2014; Iizumi and Ramankutty 2016). 28 

Current climatic trends of global warming include not only increasing temperatures, but also changes 29 

of water balance and frequency/severity of droughts (Easterling et al. 2000; Rosenzweig et al. 2002, 30 

2014; Lobell et al. 2011; Mueller and Seneviratne 2012; Kattsov and Semenov 2014; Porter et al. 31 

2014; IPCC 2015). Its impact on ecosystems has certain pattern on global scale. In the low and 32 

medium latitudes warming leads to more frequent droughts and increases vulnerability of plants to 33 

moisture shortage. In the high latitudes with sufficient moisture level warming lengthens vegetative 34 

season and intensifies growth and development of plants. Overall, geographic range of most plants 35 

species and cultivars shifts to the higher latitudes (Bindi and Olesen 2011; Peltonen-Sainio et al. 2016; 36 

Wang et al. 2016). 37 

Understanding the regional mechanisms of this impact will provide more effective adaptation 38 

of the agriculture to the climate change, allowing to obtain more stable spatiotemporally yield 39 

(Zhirnova 2005; Hlavinka et al. 2009; Holman et al. 2017). Investigation of the yield dynamics can 40 

provide crucial information about its vulnerability to the climate change and estimation of the possible 41 

risks for food security (Myglan et al. 2007; Sauchyn et al. 2009; Pfister 2010; Qureshi et al. 2013; Wu 42 

et al. 2014; Huhtamaa et al. 2015; IPCC 2015). 43 

However this field of research is highly restricted by short cover periods of the factual data of 44 

instrumental environmental measurements and especially statistics of yield (Therrell et al. 2006; 45 

Sauchyn et al. 2009). Use of proxy records in various natural objects allows overcoming this limitation 46 

(Wang and Liu 2016; Huhtamaa and Helama 2017). In particular, tree -ring width (TRW) chronologies 47 

are available in many regions and reflect environmental variations on multi-centennial scale with 48 

annual/seasonal resolution (Fritts 1976). Both TRW and yield are productivity indicators of the 49 

terrestrial ecosystems and results of plants growth and development processes. Thus common patterns 50 

in their dynamics and climatic responses are to be expected (Vaganov 1989; Wu et al. 2014). There are 51 

several recent studies investigating these two variables jointly, including tree-ring based 52 

reconstructions of yield itself or climatic factors crucial for it (Myglan et al. 2007; Helama et al. 2013; 53 

Rygalova et al. 2014; Sun and Liu 2014; Huhtamaa et al. 2015; Yadav et al. 2015). 54 

The Republic of Khakassia (Siberia, Russia) is a typical example of a region in need of 55 

evaluation of the agricultural productivity. Small grain crops production is important part of the 56 

regional economy (Agroclimatic resources 1974; Surin and Lyakhova 1993). In this study we aimed to 57 

investigate variability of the main crops yield in Khakassia using instrumental environmental data and 58 

TRW chronologies of two prevalent conifer species in forest-steppe zone of the region. To achieve this 59 

goal the following objectives were set: (1) to reveal relationships between yield and TRW per se and 60 
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between their components, (2) to analyze regional environmental factors and their extremes as driving 61 

forces for plants productivity indicators and their relationships, and (3) to obtain and verify tree-ring 62 

based reconstruction of the yield. 63 

 64 

Materials and methods 65 

Study area 66 

The Republic of Khakassia is situated in the South Siberia, on the left bank of Yenisei river in 67 

its middle reaches. Montane part (south and east) of the republic belongs to the Altai-Sayan mountain 68 

system, whereas remaining territory is represented by plains of the Minusinsk Depression and is more 69 

appropriate for agriculture (Fig. 1 a) (Agroclimatic resources 1974). Climate of the study area is 70 

sharply continental (Alisov 1956). Minusinsk Depression is a wide valley surrounded by mountain 71 

ranges from all sides except North. Region is situated far from the ocean, but has broad Yenisei river 72 

with its two reservoirs (Chlebovich and Bufal 1976). The temperature during the vegetative season on 73 

plains increases from North to South. The precipitation decreases from the mountain ranges on the 74 

East and South towards the main rivers. 75 

In spring rapidly increasing temperature have high daily variation. It causes delay of the frost-76 

free period about 30-35 days after date of daily temperature crossing +5°C threshold. As a result spring 77 

frosts inhibit plant growth on the first development stages, thus shortening length of the vegetative 78 

season. The period of temperatures higher than +10°C starts around mid May and lasts up to 120 days. 79 

Precipitation has maximum in July-August, winter precipitation is scarce (maximal snow depth on 80 

plains is about 20 sm). Its interannual variation is very high, attaining 45-57% of mean value in 81 

summer and 56-90% of mean value in winter. Main reason of precipitation shortage is location of the 82 

Minusinsk Depression in the rain-shadow of mountain ranges. Due to this fact and spatiotemporally 83 

uneven precipitation the drought indices on the plains are unstable. 84 

Regional hydrographic network is also uneven. Most of the water bodies are concentrated in 85 

the mountain part; northern half of Minusinsk depression has the lowest hydrographic density. Water 86 

bodies are mainly rain-fed, thus their runoff (Q) depends on climatic conditions. Most of the rivers 87 

belong to the Yenisei basin. In the centre of region main rivers and their tributaries form the base of 88 

irrigational network (Territorial planning scheme 2015). 89 

Agrarian territory of Khakassia can be divided into three agroclimatic zones (Fig. 1): subtaiga 90 

zone with dark gray soils as narrow strip along mountain foothills, rain-fed steppes on chernozems in 91 

the north, and dry steppes on chestnut soils in the centre of republic, where irrigated agriculture is 92 

dominating (Agroclimatic resources 1974; Semenov et al. 2004). Agricultural area on the foothills is 93 

small (~4% of total area in republic) and has the least climatic impact, hence it was not investigated in 94 

the study. 95 

 96 
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Data sources 97 

Monthly data of average temperature (T) and sum of precipitation (P) for 1938-2012 were 98 

obtained from Shira and Minusinsk stations (Fig. 1). Two indices characterizing moisture regime were 99 

computed from T and P data: Selyaninov hydrothermal coefficient (𝐻𝑇𝐶 = 10 ∙ ∑𝑃 ∑𝑇⁄  for period of 100 

𝑇 > 10°𝐶, based on daily data) and wetness index (𝑊𝐼 = ∑ log 𝑃 ∑𝑇⁄ , based on monthly data) 101 

(Selyaninov 1958; Lei et al. 2014). Additionally monthly PDSI and SPEI indices were used from open 102 

datasets (Beguería et al. 2010; van der Schrier et al. 2013). Runoff of Yenisei and Abakan rivers (QY 103 

and QA) obtained from Ust-Abakan and Raikov stations respectively were used as hydrological 104 

characteristic. 105 

Crops yield measured as obtained grain weight per unit of sowing area (Y, kg/ha) was used as 106 

indicator of agricultural productivity (Therrell et al. 2006). Yield series averaged for every 107 

administrative district for 1960-2012 were obtained from unpublished records of the Federal State 108 

Statistics Service. Sufficient data are available for crops in total and for three main crops: spring 109 

wheat, spring barley and oats. For this study yield series of every crop were united into two zonal 110 

chronologies (Northern and Central) in regards to agroclimatic conditions and irrigation. 111 

The samples of Scots pine (Pinus sylvestris L. – PS) and Siberian larch (Larix sibirica Ledeb. – 112 

LS) were collected in the foothills forest-steppes (BER, TUI, BID, KAZ sites) and insular forest in 113 

steppe (MIN). The processing of samples, measurement and cross-dating of TRW were carried out 114 

using standard dendrochronological techniques (Cook and Kairiukstis 1990; Speer 2010). All 115 

individual series were standardized by fitting exponential/linear functions to remove age related trends. 116 

Then individual indices were combined into single standard chronology per site/species using bi-117 

weight robust mean (Cook and Krusic 2005). 118 

 119 

Mathematical and statistical techniques 120 

In this study we used following statistics of time series: arithmetic mean (mean), standard 121 

deviation (stdev), variation coefficient (𝑣𝑎𝑟 = 𝑠𝑡𝑑𝑒𝑣 𝑚𝑒𝑎𝑛⁄ ), sensitivity coefficient (for time series X 122 

it is 𝑠𝑒𝑛𝑠 = mean(2 ∙ |𝑋𝑡 − 𝑋𝑡−1| (𝑋𝑡 + 𝑋𝑡−1)⁄ )), first-order autocorrelation coefficient (ar-1). For 123 

TRW chronologies also average interseries correlation coefficient (r-bar) was calculated to check 124 

quality (Fritts 1976; Wigley et al. 1984; Cook 1985). 125 

PearsonPearson’s correlation coefficients were used to evaluate relationships between time 126 

series.  High-frequency component of variation was calculated as first differences (for time series X in 127 

year t first difference is ∆𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1). This approach was successfully used in some previous 128 

analyses of climate-yield relationships (Nicholls 1997; Lobell et al. 2005; Lobell and Field 2007). 129 

Low-frequency component of variation was estimated as time series smoothed with 5-year moving 130 

average centered to the middle year (𝐴𝑣5𝑋𝑡 = mean(𝑋𝑡−2,⋯ , 𝑋𝑡+2)). 131 
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Linear regression functions were used for reconstruction of the crops yield variation 132 

components. Quality of reconstruction models was estimated with the following statistics: coefficient 133 

of multiple correlation (R), coefficient of determination (R2), adjusted coefficient of determination 134 

(R2
adj), Fisher test (F), significance level p and standard error of estimation (SEE).  135 

 136 

Results 137 

Chronologies and relationships between them 138 

Four regional crops yield chronologies were developed for each zone: crops in total – CrN and 139 

CrC in Northern and Central zones respectively, wheat – WrN and WrC, barley – BrN and BrC, oats – 140 

OrN and OrC. Their statistics are shown in Table 1. In the study area wheat yield has the highest mean 141 

values, and oats yield has the lowest ones. There are no significant differences in mean yield between 142 

zones. Variability of yield reaches 38-51% of mean values with substantial proportion of year-to-year 143 

changes, indicated by high sensitivity (𝑠𝑒𝑛𝑠 = 0.39 − 0.54). Nevertheless, yield chronologies have 144 

also significant autocorrelations. The TRW chronologies range from 124 to 272 years (Table 1). TRW 145 

has lower variability per se and sensitivity (𝑠𝑒𝑛𝑠 = 0.19 − 0.47), but higher autocorrelation than 146 

yield. 147 

Within each zone yields of different crops are highly correlated (𝑟 = 0.80 − 0.95 in Northern 148 

zone and 𝑟 = 0.81 − 0.96 in Central zone). The correlations between zones are moderate (𝑟 = 0.49 −149 

0.78) (Online Resource Table S1). The correlations between TRW chronologies are low to moderate. 150 

The highest correlations are observed within one site (r = 0.40 − 0.71). Most of yield-TRW 151 

relationships are weak, 50% of correlations are not significant on level 𝑝 < 0.05. However, we can 152 

note some relatively high correlations both in Northern (yield and BER_PS have 𝑟 = 0.34 − 0.54, 153 

yield and BID_LS have 𝑟 = 0.35 − 0.47) and Central zone (yield and BER_LS have 𝑟 = 0.45 − 0.63, 154 

yield and BER_PS have 𝑟 = 0.36 − 0.47). 155 

Comparison of the smoothed TRW and yield series (Fig. 2 a-f) was performed by cross-156 

correlation, i.e. correlations were calculated with different time shift (lag) of TRW (Online Resource 157 

Fig. S1). More pronounced similarity of low-frequency variation is revealed between yield and TRW of 158 

larch: BID_LS has the highest correlation with the yield in Northern zone, BER_LS has the highest 159 

one in Central zone, and TUI_LS has second-best correlations with the yield in both zones. The 160 

highest values of cross-correlation coefficients are observed with lag +1 to +2 years for BID_LS (𝑟 =161 

0.54 − 0.79) and for BER_LS (𝑟 = 0.66 − 0.92), and with lag +3 to +5 years for TUI_LS (𝑟 =162 

0.43 − 0.65 for Northern zone and 𝑟 = 0.54 − 0.80 for Central zone). The cross-correlations are 163 

quasiperiodic. The distance between consequent maxima / consequent minima for cross-correlations of 164 

yield with BID_LS is 19 to 20 years and for cross-correlations of yield with BER_LS and TUI_LS is 165 

26 to 33 years. Relationships between smoothed series of yield and pine TRW are considerably less 166 

pronounced. The extremal cross-correlations are unstable and not exceeding 0.50. Smoothed yield 167 
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series correlations between themselves are high, viz., 𝑟 = 0.86 − 0.97 in Northern zone, 𝑟 = 0.90 −168 

0.98 in Central zone, and 𝑟 = 0.57 − 0.87 between zones. 169 

 170 

Climatic response in the chronologies 171 

Significant correlations between TRW chronologies and monthly temperatures and precipitation 172 

were observed from previous July to current July (Online Resource, Fig. S2). Climatic response of all 173 

TRW chronologies has similar pattern. During the previous July-September and current May-July, 174 

response of TRW on P is positive and response on T is negative. Also there is positive response on both 175 

factors in the late autumn. Strength of the climatic response varies between species. 176 

Crops yield chronologies have significant climatic response only during May-July (period of 177 

crops growth and development in the region). Therefore this period was selected for comparison of 178 

influence of the ecological factors on the natural and agro-ecosystems productivity (Table 2). 179 

Temperatures have strong negative relationships with crops yield in both zones. In Northern zone yield 180 

have also high positive correlations with precipitation. All drought indices have significant correlations 181 

with yield too, especially high in Northern zone. The wetness index has the strongest relationship with 182 

yield amongst ecological variables. The Yenisei runoff has no relationships with yield, whereas the 183 

Abakan runoff’s correlations with yield are weak but partially significant. Correlations of TRW 184 

chronologies with ecological conditions of May-July are weaker than yield’s ones. But there are 185 

similar patterns of strongest reaction on precipitation and WI and minimal response on rivers runoff. 186 

Overall pine has more pronounced dependence of growth on May-July conditions than larch. 187 

 188 

Extremal events and plants productivity 189 

As unfavorable extremal events (e.g. droughts) we considered years when ecological factors in 190 

May-July have high deviations from mean values (Online Resource Table S2). Specifically, 191 

combination of low moisture supply and high temperatures was observed in 1945, 1965 and 1999; in 192 

1974 and 1981 precipitation and drought indices also were low but temperatures were on average 193 

level. These years were characterized by significant decrement of the tree growth, especially for pine. 194 

Crop failures were observed too with the most pronounced ones in 1965 and 1999. In 1994 high 195 

temperatures and normal moisture supply resulted in poor harvest and some low TRW values. Two-196 

year drought in 1945-1946 was associated with low TRW values, but yield chronologies do not cover 197 

these years. 198 

 199 

First differences of time series 200 

Correlation analysis of the first differences of yield showed relationships and patterns similar to 201 

the chronologies per se (Online Resource Table S3): for ΔY correlations between each other in 202 

Northern zone 𝑟 = 0.75 − 0.94, in Central zone 𝑟 = 0.77 − 0.95, and between zones  𝑟 = 0.34 −203 
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0.62. For ΔTRW it is true as well. They have maximal correlations within the site (𝑟 = 0.43 − 0.60) 204 

and basically the same range of correlations among themselves as TRW chronologies per se. Though 205 

correlations between ΔY yield and ΔTRW are substantially higher than between their chronologies, 206 

81% of them are significant on level 𝑝 < 0.05 (Online Resource Fig. S3). These relationships are more 207 

pronounced for TRW of pine (Fig. 2 g, h). ΔY series in Northern zone have maximal correlations with 208 

ΔMIN_PS (𝑟 = 0.47 − 0.61) and the second-best correlations with ΔKAZ_PS (𝑟 = 0.35 − 0.44). In 209 

Central zone ΔY series have maximal correlations with ΔKAZ_PS (𝑟 = 0.51 − 0.62). 210 

Relationships of ΔY and ΔTRW with first differences of environmental factors are also higher 211 

than corresponding relationships of original time series (Table 2). For example, ΔY has higher 212 

correlations with first differences of T, PDSI, SPEI and rivers runoff; ΔTRW has higher correlations 213 

with first differences of T, WI, PDSI and QA. Amongst indicators of moisture regime WI has closest 214 

relationship with both TRW and yield when first differences are considered, as well as for original time 215 

series. 216 

 217 

Tree-ring based reconstructions of the crops yield 218 

Yield series have the highest correlations with pine TRW in first differences and with larch 219 

TRW after smoothing. Therefore we made separate tree-ring based models of hith- and low-frequency 220 

variability of yield. Detailed procedure of reconstruction is presented in Online Resource.  221 

For high-frequency yield variation component the highest statistics of regression model were 222 

retrieved with using MIN_PS chronology for Northern zone and KAZ_PS chronology for Central 223 

zone. Due to relatively short cover period of MIN_PS we also constructed estimations for Northern 224 

zone on base of KAZ_PS chronology, which have ~80 year longer cover period but lower statistics 225 

(Table 3, Online Resource Fig. S4). For low-frequency yield variation component the highest statistics 226 

were retrieved with using smoothed BID_LS and TUI_LS for Northern zone, and BER_LS and 227 

TUI_LS for Central zone. For Northern zone also model on the base of BER_LS and TUI_LS was 228 

constructed, which have ~150 year longer cover period but lower statistics (Table 3, Online Resource 229 

Fig. S5). 230 

Both yield and TRW chronologies contain fluctuations of different frequency. Thus a 231 

hypothesis was postulated that these two types of models could be used together to obtain one 232 

combined model of yield dynamics estimation as a whole. We obtained combined models with cover 233 

periods 122 and 237 years for Northern zone and 238 years for Central zone (Table 3, Fig. 3). 234 

Combined models with shorter cover period for Northern zone have higher statistics then 235 

corresponding ΔY models. At the same time most statistics of combined models with longer cover 236 

period for Northern zone are similar to ones of corresponding ΔY models, but F-test and significance 237 

level are lower due to higher amount of predictors. For Central zone statistics of combined models are 238 

lower than ones of ΔY models. 239 
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 240 

Verification of reconstruction 241 

Combined models have the same extremes as actual yield chronologies within observation 242 

period. There are set of years of extremal low yield outside the observation period which are 243 

confirmed by regional data from other sources (Fig. 3). According to instrumental data, moisture 244 

deficit was observed in 1910, 1917, 1945-46 and 1951. Low yields of all three main crops were 245 

registered at the state variety testing stations of Khakassia in 1945-46, 1949 and 1951 (Zhirnova 2005). 246 

There are also confirming historic evidences in the South of Siberia (Myglan 2010). For 247 

instance, in the opinion of Vatin (1922), "since 1837 crop failures have begun in the Yenisei Gubernia 248 

and completely ruined it in 2-3 years". There is also stated that in 1838 "sown cereals and meadow 249 

grass have a mediocre growth on the occasion of the absence of rains until this time"; in 1852 "worms 250 

appeared in the crops. During the crops ripening there was no rain; the yield was less than in previous 251 

1851 year". In the work of Latkin (1890) the repeated crop failures in the Minusinsk depression during 252 

1856-1868 were described: "since 1856 due to repeated poor harvest and gold mining, prices began to 253 

rise (up to 60 kopecks for pood of rye flour and oats)"; "in 1868 again prices have risen, thanks to 254 

some years with poor harvest". In a monograph of Butanayev (2002) drought in Khakassia in 1900-255 

1902 was mentioned: "A severe drought gave rise to lack of fodder. Up to half of draught horses have 256 

died in the Abakan and Askiz establishments".  257 

 258 

Discussion 259 

Comparison of the plants productivity indicators response to the hydrothermal regime 260 

characteristics showed that the wetness index WI most explicitly expresses limiting by moisture 261 

supply. Its advantage is that this index not only combines the impact of precipitation as a source of 262 

moisture and temperature as a withering factor, but also highlights the contribution of drought events, 263 

as it contains logarithm of precipitation (Lei et al. 2014). The relationships between productivity 264 

indicators and river runoff are weak primarily due to their large catchment basins, especially for the 265 

Yenisei river. The Abakan river is supplied by the precipitation in the Minusinsk depression to a 266 

greater extent, and is the main water source for the irrigation system. These facts ensure the 267 

pronounced response to QA. Irrigation also significantly weakens yield climatic response on 268 

precipitation in the Central zone. 269 

As many other regions, study area characterizes by frequent simultaneous temperature raising 270 

and precipitation deficit (Bazhenova and Tyumentseva 2010; Prasad et al. 2011; Nouri et al. 2017), 271 

Our analysis showed that both indicators of plant productivity are accurately capturing such 272 

unfavorable combinations, as well as extremes of one of these factors. It means that drought events 273 

lead to synchronicity of negative extremes in yield and TRW, which is partially reason for the positive, 274 

though not always significant, correlations between them. Therefore, it should be expected that the 275 
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TRW chronologies and the yield dynamics reconstructed on their basis will allow also restoring 276 

regional climatic extremes history (Touchan et al. 2016).Growth and development of plants has 277 

common regularities due to the unity of resources and physiological mechanisms ( e.g. nutrition, 278 

respiration, water balance), so we should expect them to be limited by the same environmental factors 279 

typical for the semi-arid continental climatic zone (Myglan et al. 2007; Sun and Liu 2014). Moreover, 280 

both grains for agricultural crops and wood for trees are the main targets of resources storage processes 281 

during their growth and development. For instance, wheat has about 50% ratio of grain mass to above 282 

ground biomass (Schulze et al. 2005). Also one more common trait is adaptation to the moisture 283 

deficit.  Climatypes of the tree species in forest-steppe are adapted to the semiarid conditions by 284 

natural selection. At the same time, regional crop cultivars are adapted to these conditions by human 285 

activity, i.e. breeding. 286 

Differences in the variability of yield and TRW chronologies follow primarily from their life 287 

forms and cycles. Most of yield variability of crops, as annual plants, is due to current conditions, 288 

including high-frequency climatic fluctuations. Significant autocorrelation is associated with using the 289 

previous harvest as source of grain for sowing, because grain quality usually has positive relationship 290 

with yield (Ozturk and Aydin 2004; Meng et al. 2016). Long-term yield variability is influenced by 291 

both climatic trends and changes in farming practices and cultivars. Conifer trees as perennials, 292 

especially evergreens, are characterized by stronger autocorrelation and less sensitivity of growth. On 293 

the one hand, the variability of tree growth is constrained by the slowness of changes in morphometric 294 

parameters (the size and structure of stem&root system) determining the access to resources. On the 295 

other hand, woody plants are characterized by active storage of nutrients for using in the next season. 296 

Moreover, evergreen trees have needles of previous years participating in photosynthesis processes 297 

(Chapin et al. 1990; Schulze et al. 2005). Thus trees respond to the hydrothermal regime not only of 298 

the current vegetative season, but also of the previous months. In regard to long-term tree growth 299 

dynamics, the impact of human activity is much less pronounced than in agroecosystems. Thereby the 300 

long-term variation of TRW is mainly due to a combination of climatic trends, aging and changes in the 301 

stand structure. Also it is necessary to take into account using of standardized TRW data, from which 302 

most of the age trend was removed during processing. Since the crops yield does not have such trends, 303 

its standardizing was not necessary.  304 

As a result of all aforementioned differences, despite the similarity of the growth conditions 305 

TRW chronologies per se have limited relationships with crops yield, as well as with climate of May-306 

July. Therefore instead of head-on approach we proposed other methods to make tree-ring-based yield 307 

reconstruction. Separation of plants production variability into high- and low-frequency components 308 

and their analysis allowed us to circumvent these restrictions. 309 

Low-frequency variation in the yield and TRW has much in common due to its dependence on 310 

climatic trends. More pronounced similarity with yield is observed in larch TRW smoothed series then 311 
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in pine ones. It might be caused by need to re-grow all needles every spring for larch. Pine as 312 

evergreen has needles with overlapping life spans, which complicates autocorrelation component and 313 

low-frequency variation of growth in general. The delay in decadal oscillations of the tree growth in 314 

comparison with crops is associated with the more pronounced autocorrelation described above. 315 

Main non-climatic factors affecting variation of the both plant productivity indicators (the age 316 

changes of trees and the development of agricultural technologies) are low frequency. Thus transition 317 

to the first differences reduces their contribution and highlights role of the climate and the hydrological 318 

regime, as they have considerable high-frequency variation component. It should be noted that, unlike 319 

the smoothed series, the similarity between year-to-year dynamics of pine growth and the crops yield 320 

is more pronounced. This is due to the fact that the response to the May-July conditions is higher for 321 

pine than for larch. 322 

As both components of yield variability have more close relationships with the tree growth than 323 

yield chronologies per se, we can reconstruct these components separately. Both reconstructions have 324 

their advantages and disadvantages. The reconstructed first differences easily allow one-year crops 325 

failures to be revealed, but do not allow to receive information about longer periods of high/low yield. 326 

Conversely, the reconstruction of the smoothed series describes long-term trends well, but there is no 327 

information about the extreme years. Therefore, it was proposed to reconstruct the entire yield 328 

variability by combining these two models. Use of a recursive equation for obtaining yields from the 329 

model of the first differences leads to the accumulation of errors in long-term trends. To erase these 330 

errors, low-frequency variation was completely removed from the resulting series by subtracting their 331 

smoothed series. Then year-to-year yield fluctuations were threaded onto the reconstructed separately 332 

long-term oscillations. The advantage of this approach in our case is also in the use of tree-ring 333 

chronologies of different species and habitats, which reduces the correlations between predictors. 334 

The obtained yield estimations are quite close to the factual series, especially extremal values. 335 

However, the limits of the TRW chronologies cover periods restricting the length of the most 336 

qualitative yield reconstruction in the Northern zone. The use of longer chronologies makes it possible 337 

to significantly extend this period at the expense of the quality reducing. Despite this, the relevance of 338 

models is confirmed by their comparison with other data sources –instrumental records, historical 339 

documents, and yield data of regional variety testing stations. 340 
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Table 1. Statistical characteristics of crops yield and TRW chronologies 1 

 Crops yield Tree-ring width 

Nothern zone Central zone Pinus sylvestris Larix sibirica 

CrN WrN BrN OrN CrC WrC BrC OrC BER PS BID PS MIN PS KAZ PS BER LS TUI LS BID LS KAZ LS 

N, years 53 43 43 43 53 33 43 43 257 164 166 246 272 294 124 178 

period, 

years 

1960- 

2012 

1970- 

2012 

1970- 

2012 

1970- 

2012 

1960- 

2012 

1980- 

2012 

1970- 

2012 

1970- 

2012 

1752- 

2008 

1849- 

2012 

1847- 

2012 

1767- 

2012 

1737- 

2008 

1719- 

2012 

1889- 

2012 

1835- 

2012 
Number 

of trees 
- - - - - - - - 14 15 40 23 14 57 16 20 

mean* 9.34 10.40 10.00 9.27 9.73 11.31 9.87 9.76 - - - - - - - - 
stdev* 4.06 3.96 4.68 4.56 4.45 5.57 5.00 4.46 0.29 0.35 0.23 0.43 0.32 0.47 0.32 0.62 

var* 0.43 0.38 0.47 0.49 0.46 0.49 0.51 0.46 - - - - - - - - 

sens 0.43 0.39 0.48 0.54 0.45 0.39 0.52 0.51 0.25 0.33 0.19 0.40 0.30 0.43 0.26 0.47 
ar-1 0.36 0.41 0.44 0.34 0.39 0.62 0.40 0.27 0.48 0.44 0.45 0.51 0.44 0.49 0.50 0.62 

r-bar - - - - - - - - 0.56 0.51 0.43 0.60 0.58 0.57 0.42 0.48 
*mean and stdev of the crops yield are in 102 kg/ha; standard TRW chronologies have mean = 1 and var = stdev 2 

 3 

Table 2. Correlation coefficients of crops yield and TRW chronologies with climatic and hydrological 4 

variables, averaged for the crops growth period – May-July (calculated for time series / chronologies 5 

per se and for their first differences) 6 

 

T P НTC WI PDSI SPEI QE QA  ΔT ΔP ΔНTC ΔWI ΔPDSI ΔSPEI ΔQE ΔQA 

time series per se first differences 

CrN -0.48 0.48 0.56 0.72 0.50 0.52 0.20 0.26 ΔCrN -0.57 0.32 0.41 0.67 0.70 0.56 0.32 0.29 

WrN -0.54 0.38 0.46 0.66 0.31 0.32 0.17 0.21 ΔWrN -0.58 0.23 0.30 0.56 0.48 0.40 0.26 0.28 

BrN -0.41 0.58 0.63 0.68 0.48 0.55 0.33 0.40 ΔBrN -0.43 0.47 0.52 0.65 0.63 0.58 0.44 0.40 
OrN -0.44 0.57 0.63 0.71 0.48 0.57 0.23 0.34 ΔOrN -0.43 0.46 0.52 0.65 0.61 0.57 0.32 0.31 

CrC -0.58 0.30 0.40 0.61 0.41 0.45 0.20 0.28 ΔCrC -0.59 0.45 0.51 0.66 0.55 0.52 0.39 0.54 

WrC -0.62 -0.02 0.12 0.45 0.14 0.16 0.22 0.14 ΔWrC -0.63 0.18 0.26 0.49 0.35 0.22 0.32 0.51 

BrC -0.56 0.11 0.21 0.43 0.29 0.27 0.08 0.23 ΔBrC -0.63 0.29 0.36 0.53 0.39 0.35 0.24 0.58 
OrC -0.53 0.26 0.36 0.56 0.37 0.42 0.21 0.28 ΔOrC -0.46 0.37 0.42 0.58 0.49 0.43 0.38 0.55 

BER PS -0.32 0.26 0.25 0.37 0.15 0.21 -0.01 0.22 ΔBER PS -0.45 0.33 0.33 0.50 0.26 0.25 0.00 0.37 

BID PS -0.21 0.33 0.23 0.29 0.32 0.26 0.20 0.37 ΔBID PS -0.36 0.09 0.04 0.25 0.36 0.16 0.31 0.50 
MIN PS -0.35 0.45 0.47 0.51 0.40 0.38 0.27 0.45 ΔMIN PS -0.46 0.45 0.49 0.61 0.63 0.43 0.46 0.58 

KAZ PS -0.16 0.17 0.19 0.27 0.08 0.17 0.12 0.54 ΔKAZ PS -0.36 0.23 0.29 0.45 0.46 0.20 0.32 0.70 

BER LS -0.36 0.28 0.17 0.36 0.16 0.19 -0.21 0.04 ΔBER LS -0.32 0.25 0.16 0.31 0.14 0.14 -0.22 0.22 
TUI LS -0.14 0.35 0.17 0.22 0.29 0.24 -0.24 0.11 ΔTUI LS -0.27 0.32 0.20 0.31 0.32 0.16 0.03 0.31 

BID LS -0.16 0.32 0.25 0.28 0.41 0.27 0.18 0.18 ΔBID LS -0.15 0.10 0.06 0.17 0.40 0.21 0.19 0.36 

KAZ LS -0.06 0.01 0.00 0.12 -0.10 0.03 0.16 0.17 ΔKAZ LS -0.11 0.02 0.03 0.20 0.34 0.03 0.28 0.53 

T – temperatures; P – precipitation; HTC – hydrothermal coefficient of Selyaninov; WI – wetness index (Lei et al. 7 

2014); QE – runoff of Yenisei river; QA – runoff of Abakan river. 8 

Marked with shade correlation coefficients are significant at p<0.05 9 
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Table 3. Regression reconstruction models of crops yield high- and low- frequency variation 11 

components and combined models on base of TRW chronologies and their statistical characteristics 12 

Yield models Function / predictors R R2 R2
adj F p SEE Period 

high-frequency variability component 

ΔCrN1 

ΔWrN1 
ΔBrN1 

ΔOrN1 

-1.31 + 13.16·MIN_PS – 11.63·MIN_PS-1 

-3.16 + 13.55·MIN_PS – 10.18·MIN_PS-1 
-1.38 + 13.89·MIN_PS – 12.50·MIN_PS-1 

-0.58 + 12.58·MIN_PS – 12.00·MIN_PS-1 

0.65 

0.67 
0.63 

0.56 

0.42 

0.45 
0.40 

0.31 

0.40 

0.43 
0.36 

0.26 

17.8 

16.2 
9.5 

6.5 

<0.001 

<0.001 
<0.001 

0.004 

3.56 

3.27 
4.05 

4.56 

1848-2012 

ΔCrN2 

ΔWrN2 
ΔBrN2 

ΔOrN2 

0.21 + 6.45·KAZ_PS – 6.50·KAZ_PS-1 

-0.19 + 6.24·KAZ_PS – 5.92·KAZ_PS-1 
1.10 + 5.31·KAZ_PS – 6.51·KAZ_PS-1 

0.74 + 5.49·KAZ_PS – 6.32·KAZ_PS-1 

0.60 

0.60 
0.51 

0.48 

0.36 

0.36 
0.26 

0.23 

0.34 

0.33 
0.22 

0.19 

14.0 

11.1 
6.9 

5.9 

<0.001 

<0.001 
0.003 

0.006 

3.72 

3.53 
4.42 

4.75 
1768-2012 

ΔCrC 
ΔWrC 

ΔBrC 

ΔOrC 

-0.03 + 9.29·KAZ_PS – 9.14·KAZ_PS-1 
0.43 + 10.41·KAZ_PS – 10.71·KAZ_PS-1 

-0.39 + 9.47·KAZ_PS – 8.84·KAZ_PS-1 

0.45 + 9.18·KAZ_PS – 9.61·KAZ_PS-1 

0.80 
0.92 

0.72 

0.75 

0.64 
0.85 

0.51 

0.56 

0.62 
0.84 

0.49 

0.54 

42.7 
82.9 

20.6 

25.3 

<0.001 
<0.001 

<0.001 

<0.001 

3.04 
1.96 

3.92 

3.63 

low-frequency variability component 

Av5Y_N1 

Av5Y_N2 

-1.09 + 3.50·Av5TUI_LS4 + 7.39·Av5BID_LS1 

3.55 + 4.17·Av5TUI_LS3 + 1.91·Av5BER_LS2 

0.81 

0.62 

0.66 

0.39 

0.65 

0.36 

43.1 

14.1 

<0.001 

<0.001 

1.52 

2.05 

1890-2009 

1737-2004 

Av5Y_C -2.40 + 4.02·Av5TUI_LS5 + 8.54·Av5BER_LS1 0.85 0.73 0.72 59.5 <0.001 1.67 1734-2005 

combined models 

CrN 

WrN 

BrN 
OrN 

MIN_PS, MIN_PS-1, Av5TUI_LS4, Av5BID_LS1 

0.76 

0.68 

0.70 
0.68 

0.57 

0.46 

0.49 
0.46 

0.53 

0.40 

0.43 
0.40 

15.1 

7.4 

8.5 
7.6 

<0.001 

<0.001 

<0.001 
<0.001 

2.82 

3.15 

3.65 
3.83 

1890-2011 

CrN 

WrN 

BrN 
OrN 

KAZ_PS, KAZ_PS-1, Av5TUI_LS3, Av5BER_LS2 

0.55 

0.60 

0.54 
0.54 

0.30 

0.36 

0.29 
0.29 

0.23 

0.27 

0.20 
0.20 

4.3 

4.2 

3.1 
3.1 

0.006 

0.009 

0.030 
0.030 

3.83 

3.71 

4.65 
4.52 

1768-2004 

CrC 

WrC 
BrC 

OrC 

KAZ_PS, KAZ_PS-1, Av5TUI_LS5, Av5BER_LS1 

0.56 

0.75 
0.59 

0.53 

0.31 

0.56 
0.35 

0.28 

0.25 

0.47 
0.27 

0.19 

4.7 

6.6 
4.2 

3.1 

0.003 

0.001 
0.008 

0.031 

4.05 

4.33 
4.38 

4.20 

1768-2005 



 

 

 

 

Fig. 2 Low- and high-frequency variation components of the crops yield and TRW 

chronologies: smoothing (Av5 – 5-year moving average) of yield chronologies, where CrN/CrC – 

crops in total, WrN/WrC – wheat, BrN/BrC – barley, OrN/OrC – oats regional yield series for 

Northern (a) and Central (b) zones respectively; smoothing (Av5) of TRW chronologies, low-

frequency variation of which is the best-fitting for Northern (c) and Central (d) zones; comparison of 

the yield and TRW low-frequency variation in Northern (e) and Central (f) zones; high-frequency 

variation (first differences) of yield in comparison with the best-fitting high-frequency TRW variation 

in Northern (g) and Central (h) zones 
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