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Abstract 

Eu2(SO4)3 was synthesized by chemical precipitation method and the crystal structure was 

determined by Rietveld analysis. The compound crystallizes in monoclinic space group С2/с. In the 

air environment, Eu2(SO4)3 is stable up to 670°C. The sample of Eu2(SO4)3 was examined by 

Raman, Fourier-transform infrared absorption and luminescence spectroscopy methods. The low 

site symmetry of SO4 tetrahedra results in the appearance of the IR inactive ν1 mode around 1000 

cm–1 and ν2 modes below 500 cm–1. The band intensities redistribution in the luminescent spectra of 

Eu3+ ions is analyzed in terms of the peculiarities of its local environment.  
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1. Introduction 

Sulfates are well known compounds in chemistry and mineralogy, and they are of great 

importance for human life, urban technology, industry and environmental stability [1-6]. Sulfate 

chemistry has been developed since ancient times and a lot of inorganic and organic-inorganic 

compounds were synthesized and evaluated [2,6-9]. However, the history of rare earth (Ln) sulfates 

is comparatively short and significant properties of the crystals remain unknown because many 

compounds are difficult in their synthesis and storage due to active hydration in contact with the 

humid air. There is very scarce information about the crystal structure of Ln elements anhydrous 

sulfates Ln2(SO4)3. Up to now, for the partial set of Ln = La-Gd, excluding Pm, the monoclinic 

crystal structure in space group C2/c was only defined for Nd2(SO4)3 [10]. For the Ln2(SO4)3 

compounds, Ln = La, Ce, Pr, Sm, Eu, Gd, the structures were not solved and only the monoclinic 

unit cell parameters were obtained via the structural analogy to Nd2(SO4)3 [11-15]. For an 

observation, the known structural characteristics are summarized in Table S1. As to the partial set 

of Ln = Y,Tb-Lu, the orthorhombic structures in space group Pbcn were determined for sulfates 

Ln2(SO4)3, Ln = Y, Er [16-18]. Besides, the orthorhombic structure type of anhydrous sulfates was 

verified for Ln = Tb, Dy, Ho, Tm, Yb and Lu [19,20], and trigonal structures were determined for 

-Yb2(SO4)3 and closely related sulfate Sc2(SO4)3 [16,21]. Thus, it can be mentioned that several 

structure types are possible in sulfates Ln2(SO4)3 depending on the rare earth element selection. 

Above this, the existence of polymorphic modifications was reported on for Yb2(SO4)3 [20,21]. 

Among rare earth compounds, the crystals carrying Eu3+ ions are of particular interest because 

the ions originate efficient red photoluminescence appropriate for the creation of WLED devices 

with spectral properties similar to the Sun daylight. In the recent years, the spectroscopic properties 

of different Eu3+-bearing phosphors were evaluated to see the relation between their structural and 

optical characteristics [22-26]. However, in the phosphor compounds, the Eu3+ doping level is 

commonly low and, frequently, the Eu3+ ions distribution over the appropriate crystallographic 

positions is not evident. For this reason, in complex compounds, it is difficult to define clearly the 



relation between the spectroscopic parameters and the Eu3+ ion coordination in the host lattice. In 

this situation, the europium compounds, where Eu3+ is a constituent element, are more suitable for 

this purpose because the Eu3+ ion coordination can be precisely defined by the methods of modern 

crystal structure analysis [27-34]. Thus, the present study is aimed at the synthesis of anhydrous 

Eu2(SO4)3 and evaluation of their structural and optical properties. As it is well known, the S-O 

bonds are very short and it is particularly interesting to see the spectroscopic parameters of Eu3+ 

ions in the SO4 tetrahedral environment.   

In the past, several studies were devoted to the synthesis and characterization of europium 

(III) sulfate, and it was shown that the preparation of Eu2(SO4)3 is a nontrivial task because of high 

a tendency to hydration [13,35-38]. The available structural properties of the presently known Eu3+ 

sulfate hydrates are listed in Table S2 [20,35,39-43].  Nevertheless, to the best of our knowledge, the 

crystal structure and basic physical properties of anhydrous Eu2(SO4)3 are still unknown. To fill this 

gap, in the present work, the polycrystalline powder of Eu2(SO4)3 has been synthesized and the crystal 

structure of the sulfate has been determined for the first time. It might be well to point that much 

research on synthesis of materials for various applications by different methods, including the green 

chemistry approach, were conducted resently [44-63]. However, to provide synthesis of 

stoichiometric Eu2(SO4)3 compound, the precipitation approach was used in the present study. Then, 

the thermal and spectroscopic characteristics of the compound were evaluated in detail and compared 

to those of monoclinic -Eu2(MoO4)3 which structure is closely related to that of Eu2(SO4)3. 

 

2. Experimental methods 

The Eu2(SO4)3 powder was obtained by precipitation from a solution of europium nitrate by 

concentrated sulfuric acid. The high purity starting reagents were used for synthesis: Eu2O3 

(99.99%, ultrapure, TDM-96 Ltd. Russia), concentrated nitric acid solution (C(HNO3) = 14.6 mol/l, 

ultrapure, Vekton Ltd., Russia), concentrated sulfuric solution acid (C(H2SO4) = 17.9 mol/l, 

ultrapure, Vekton Ltd., Russia). Weighing the dry reagents was carried out on an analytical balance 



with an accuracy of 0.1 mg. Prior to weighing, europium oxide was calcined in a muffle furnace at 

the temperature of 1000°C for 12 h to remove the gases adsorbed from the air and the products of 

their interaction with the Eu2O3 oxide surface. The acid solutions were measured off by means of 

glass measuring cylinders at the accuracy of 0.1 ml. 

Initially, the 5.00 g Eu2O3 charge was placed in a 100 ml glass round-bottomed flask. Then, 

6.1 ml of the concentrated nitric acid solution were added in small portions. The reaction mixture 

was heated with a continuous stirring until the oxide was completely dissolved. As a result, the 

europium (III) nitrate solution was obtained by reaction: 

 

Eu2O3 + 6HNO3 → 2Eu(NO3)3 + 3H2O  

 

After cooling the solution, 2.6 ml (an excess of 10%) of the concentrated sulfuric acid solution were 

added to the flask in small portions, not allowing a strong reheating of the reaction mixture. The 

reaction results in the europium sulfate precipitation: 

 

2Eu(NO3)3 + 3H2SO4 → Eu2(SO4)3↓ + 6HNO3 

 

After the precipitation, the mixture was distilled to a dry residue. The europium sulfate powder was 

additionally calcined in a tubular furnace at the temperature of 500°C to remove the adsorbed acid 

and then annealed in a muffle furnace at the same temperature for 7 days to form the final powder 

product. 

This method of rare earth sulphates synthesis has several significant advantages: 

- During the synthesis, no other metal cations, except Eu3+, are introduced into the reaction mixture 

and this excludes its substitution in the crystal lattice and the double salt formation. 

- Europium sulphate is precipitated from a homogeneous solution of europium nitrate, which 

ensures a high stoichiometry of the sample. 



- The reaction in a concentrated sulfuric acid environment provides the anhydrous sulphate structure 

formation and suppresses the crystalline hydrates generation even at very early precipitation stages. 

Under the Sun daylight illumination, the synthesized Eu2(SO4)3 powder possesses light-cream tint, 

as seen in Fig. 1, that is a common characteristic of oxide compounds of trivalent europium 

[28,34,64]. 

The powder diffraction data of Eu2(SO4)3 for the Rietveld analysis were collected at room 

temperature with a Bruker D8 ADVANCE powder diffractometer (Cu-Kα radiation) and linear 

VANTEC detector. The step size of 2θ was 0.016°, and the counting time was 2.5 s per step. The 2θ 

range of 7.5-70º was measured with a 0.6 mm divergence slit, but the 2θ range of 70-140º was 

measured with a 2 mm divergence slit. The larger slits allow a noticeable intensity increase for 

higher-angle peaks without a resolution decrease because the higher-angle peaks are broad enough 

to be not affected by a bigger divergence beam. The esd’s σ(Ii) of all points on the patterns were 

calculated using intensities Ii: σ(Ii)=Ii
1/2. The intensities and obtained esd values were further 

normalized via relations Ii norm = Ii×0.6/(slit width), σnorm(Ii) = σ(Ii)×0.6/(slit width), taking into 

account the actual value of the divergence slit width which was used to measure each particular 

intensity Ii, and was saved in the xye-type file. In this algorithm, the transformed diffraction pattern 

has a usual view over the whole 2θ range of 7.5-140º, but all high-angle points have small esd 

values. 

Scanning Electron Microscopy (SEM) was carried out on electron microscope JEOL JSM-

6510LV. X-ray energy-dispersive analyzer Oxford Instruments X-Max 20mm2 was used to register 

X-rays at element spectrum plotting in selected sample surface areas. The chemical composition 

measurements were carried out with the use of a pressed tablet. The inaccuracy in the element 

content determination was equal to ±0.2%.  

The thermal analysis was carried out in the argon flow at Simultaneous Thermal Analysis 

(STA) equipment 499 F5 Jupiter NETZSCH (Germany). The powder samples were inserted into 

alumina crucibles. The heating rate was 3°С/min. For the enthalpy determination, the equipment 



was initially calibrated with the use of standard metal substances, such as In, Sn, Bi, Zn, Al, Ag, 

Au, Ni. The heat effect peaks were determined with package «Proteus 6 2012». The peak 

temperatures and areas in parallel experiments were reproduced at an inaccuracy lower than 3%.  

The unpolarized Raman spectra were collected in a backscattering geometry, using a triple 

monochromator Horiba Jobin Yvon T64000 Raman spectrometer operating in the double 

subtractive mode and then detected by an LN-cooled charge-coupled device. The spectral resolution 

for the recorded Stokes side Raman spectra was set to ~2.5 cm–1 (this resolution was reached by 

using gratings with 1800 grooves/mm and 100 mm slits). The microscope system, based on the 

Olympus BX41 microscope with an Olympus 50 objective lens f = 0.8 mm with NA=0.75 

numerical aperture, provides a focal spot diameter of about 3 μm on the sample [66,67]. Single-

mode argon 457.9 nm line from a Spectra-Physics Stabilite 2017 Ar+ laser of 1 mW on the sample 

was used as an excitation light source. The laser light intensity was adjusted to avoid the sample 

heating. 

The vacuum Fourier-transform spectrometer VERTEX 70V (BRUKER) was used to obtain 

the IR (infrared) absorption spectra with spectral resolution 4 cm–1. The spectrum was produced 

from the sample shaoed as about 0.4 mm thick tablets of 13 mm in diameter. The tablets were 

prepared as follows: 0.003 g of Eu2(SO4)3 was thoroughly ground with 0.111 g of KBr. The force 

equal to ten tons was applied at the produced mixture. The Globar was used as an IR radiation 

source, and it was equipped with a KBr wide beamsplitter and RT-DLaTGS as a detector. 

The luminescence-excitation spectra and luminescence spectra under the room temperature 

were registered on a Horiba Jobin Yvon T64000 Raman spectrometer. In this apparatus, the Xenon 

lamp with the power of 150 W is the light source.  

 

3. Results and Discussion 

The X-ray diffraction pattern recorded for Eu2(SO4)3 is shown in Fig. 2. The compound 

crystallizes in the monoclinic structure, space group С2/с. The Rietveld refinement was performed  



using a TOPAS 4.2 package which accounts the esd’s of each point by a special weight scheme 

[65]. All peaks were indexed by the monoclinic unit cell (C2/c) with the parameters close to those 

of Nd2(SO4)3 [10] and, therefore, this crystal structure was taken as a starting model for the Rietveld 

refinement. However, the nonstandard space group B2/b used earlier [10] was transformed into a 

standard setting C2/c and all atom coordinates were transformed accordingly. Respectively, the 

Nd3+ sites in the Nd2(SO4)3 structure were assumed as occupied by Eu3+ ions in the Eu2(SO4)3 

structure. To reduce the number of refined parameters, only one thermal parameter was refined for 

all O atoms. The refinement was stable and it gave low R-factors. The main crystallographic 

parameters obtained for Eu2(SO4)3 are listed in Table 1, and the atom coordinates and bond lengths 

are summarized in Tables S3 and S4, respectively. 

The Eu2(SO4)3 structure is shown in Fig. 3. In the structure, the Eu3+ ion is surrounded by 

seven sulfate groups, two of which are chelating groups, and, therefore, the general coordination 

number of europium in the structure is equal to nine. The coordination polyhedron is a deformed 

three-cap trigonal prism. The coordination polyhedra are banded in pairs by the surfaces that 

consisted of three oxygen atoms and the polyhedra formed the chains parallel to axis c. The bonding 

of chains with parallel layers of crystallographically different sulfate groups leads to the formation 

of a three-dimensional framework crystal structure. The topological analysis of the net by Topos 

Pro program [68], using the simplification that Eu3+ and both SO4
2– tetrahedral groups are nodes, 

revealed that this is a 3-nodal (4-c)(5-c)2(9-c)2 net with point symbol  

(32.42.52)(32.47.5)2(3
6.414.58.68)2, which is new. In the coordinated polyhedron the lengths of eight 

Eu-O bonds are in the range of 2.30-2.58Å. One bond has the length of 2.80Å that allow identifing 

the coordination number of europium in the structure as 8+1. In comparison, the Nd-O bond lengths 

in Nd2(SO4)2 are in the range of 2.32-2.69 Å and the ninth longest bond length is 2.75 Å. Since Nd-

O bond lengths are closer to each other, the distortion index (D=(1/n)∑((Li–<L>)/<L>), where Li is 

the distance from the central atom to the ith coordinating atom and <L> is the average bond length), 

the value D = 0.042 is slightly smaller than that of the Eu2(SO4)2 compound having D = 0.046 [49]. 



There are two independent sulfate tetrahedra in the asymmetric part of the unit cell. In the first 

type of tetrahedra, two oxygen atoms are coordinated by two europium atoms in pairs. Herewith, 

one europium atom is chelately bonded and the other one is monodentately bonded. In the second 

type of tetrahedra, two oxygen atoms are monodentately bonded with two europium atoms. The 

other two oxygen atoms are bonded with three europium atoms: one is chelately bonded and two are 

monodentately bonded. In both tetrahedra the O-S-O angles are different from the ideal tetrahedral 

angle and vary within 102-121°, and that leads to a significant deforming of tetrahedra. The sulfate 

tetrahedra in europium (III) sulfate have much more deformation in comparison with the tetrahedra 

in the structures of europium sulfates crystallohydrates [20,35,39-43], apparently, because of a 

higher anhydrous sulfate structure rigidity. 

 The representative SEM pattern recorded for the Eu2(SO4)3 powder is shown in Fig. 4. 

According to the SEM observation, the obtained europium sulfate product is mostly formed by 

unfaceted particles of 1-50 m in size. As it is evident in Fig. S1, the sample contains only 

constituent elements Eu, S and O. The obtained element ratio averaged for 5 measurements Eu:S:O 

= 51.32:16.25:32:43 is in excellent relation to nominal composition Eu:S:O = 51.33:16.25:32:42. 

As evident in Fig. S2, the constituent element distributions over the sample surface are very 

uniform.  

  To see the thermal stability range for Eu2(SO4)3, the TG/DSC measurements were 

implemented. It is well known, that rare earth salts precipitation from aqueous solutions inevitably 

leads to the formation of a mixture of crystalline hydrates [70,71]. Then, the main problems in the 

anhydrous salts formation by the thermal decomposition of their crystalline hydrates are the 

complete removal of all crystalline hydrate water molecules and the absence of pyrohydrolysis 

processes [72,73]. The oxidation and pyrohydrolysis of inorganic salts commonly proceed with the 

heat development [74,75]. Respectively, the pyrohydrolysis processes of Eu2(SO4)3 can be 

described by the following chemical equations: 

Eu2(SO4)3(s) + 2H2O(g) → Eu2O2SO4(s) + 2H2SO4(l)                       (1) 



Eu2(SO4)3(s) + 3H2O(g) → Eu2O3(s) + 3H2SO4(l)                            (2) 

The reaction enthalpies can be calculated using the formation enthalpies of the starting and 

resulting compounds [38,76-78]. The values are equal to -393.8 and -290.3 kJ/mol for reactions (1) 

and (2), respectively. This means that the pyrohydrolysis processes should proceed with a drastic 

development of heat.  

For the investigation of these issues, the highest crystalline hydrate of europium sulfate 

Eu2(SO4)3·8H2O (home made) was chosen as a starting point. The related XRD pattern is shown in 

Fig. S3 (a). The TG/DSC curves recorded for the of Eu2(SO4)3·8H2O sample are shown in Fig. 5. 

According to the DTA data, the thermal dehydration of europium sulfate hydrate proceeds in one 

step and it is completed at  ~350°C. The phase transformation over the range of 25-350°C is 

accompanied by a strong endothermic effect, which indicates the absence of pyrohydrolysis 

processes. According to the TG data, the composition of the product existing in the temperature 

range of 350-670°C is well described by formula Eu2(SO4)3. The heat development effect at ~400°C 

is not accompanied by a mass change and it could be interpreted as the crystallization of an 

amorphous component appeared in the dehydration process [38]. According to the TG data, the 

Eu2(SO4)3 decomposition associated with the sulfate group destruction begins from ~670°C. The 

product of this process is europium oxysulfate Eu2O2SO4, as verified by the XRD analysis shown in 

Fig. S3(c) [79]. The final thermal decomposition product of Eu2(SO4)3·8H2O is europium oxide 

Eu2O3 formed at ~1170°C. For each crystaline phase observed in the TG/DSC experiment, the 

particle size was estimated using package TOPAS 4.2 and the results are summarized in Table 2. 

Thus, the temperature of ~500°C chosen in the present study for the precipitate calcination is 

optimal for reaching anhydrous europium sulfate Eu2(SO4)3. This temperature is high enough to 

decompose all the formed crystalline hydrates, but it is not too high to initiate of the thermal 

destruction process of Eu2(SO4)3. 

The peaks broadening caused by the temperature increase was registered in the thermogram. 

This fact indicates a kinetic complication of high-temperature processes in comparison with low-



temperature processes. According to the available kinetic data, calculated by the Kissinger equation, 

the energy activation barrier strongly increases during the transition from the dehydration of the 

crystalline hydrate (Ea = 71 kJ/mol) to the decomposition of sulfates Eu2(SO4)3 (Ea = 303 kJ/mol) 

and Eu2O2SO4 (Ea = 400 kJ/mol ), although somewhat offset by an increase in the pre-exponential 

factor, which, in fact, reflects an increase in the usefulness of the steric factor of activation entropy 

[38]. Obviously, the kinetic difficulties that appeared with the Eu2(SO4)3∙8H2O dehydration are the 

least. The reduced rigidity of the structure facilitates this process passing. 

In our opinion, the pre-exponential factor in the processes of thermal destruction of salt 

systems, not related to the collision of molecules, depends on the symmetry of the polyhedra in the 

structure. In order to initiate thermal decomposition, a needed condition is that the polyhedra, in the 

result of thermal oscillations, undergo that kind of deformation that makes their further existence 

impossible. Consequently, the structures with the highest structural element symmetry will show 

the greatest kinetic stability on the temperature increase. Such structures will be characterized by a 

large value of the pre-exponential factor as a steric factor associated with the structure symmetry. 

The crystal structures of Eu2(SO4)3 and Eu2O2SO4 [79] are represented by the identical 

structural elements: three-capped trigonal prisms [EuO9] and tetrahedra [SO4]. The polyhedra in the 

Eu2O2SO4 structure are characterized by their lower distortion due to the presence of bridging 

oxygen atoms μ-O, and the structure exhibits agreater kinetic stability by experiencing a lower 

deformation stress. 

The Raman and IR spectra obtained for Eu2(SO4)3 are shown in Figs. 6 and 7, respectively. 

The vibrational representation for the monoclinic phase of Eu2(SO4)3 at the Brillouin zone center is: 

Γvibr = 25Ag + 26Bg + 25Au + 26Bu. The odd modes Γacoustic = Au + 2Bu are acoustic ones while 

remaining modes are optical. Ag and Bg modes are Raman active, and Au and Bu modes are infrared-

active. According to the XRD data, the Eu2(SO4)3 crystal structure contains two translationally 

independent SO4 tetrahedra S1 and S2. Each ideal tetrahedral SO4 group has four Raman-active (ν1–

ν4) and two infrared-active (ν3, ν4) normal vibrations. The rules ν3> ν1 and ν4> ν2 are for the 



compounds with SO4 tetrahedra [80]. In the case of isolated SO4 groups, the asymmetric stretching 

ν3 vibration can be observed around 1100 cm–1, the symmetric stretching ν1 vibration is positioned 

around 980 cm–1, and bending ν4 and ν2 modes are observed in the region of 600 and 450 cm–1 

[80,81]. The detailed symmetry classification of phonons of SO4 tetrahedra in the Eu2(SO4)3·8H2O 

hydrate have been shown earlier in [82]. The correlation diagrams between the free SO4 groups of 

Td symmetry, site symmetry and factor group symmetry of the unit cell in anhydrous Eu2(SO4)3 

presented in Tables 3 and 4. It can be concluded that 12 Raman active modes can appear in the 

range of stretching vibrations. Three of them are SO4 symmetric stretching and nine modes are 

asymmetric stretching modes. Two very strong Raman lines observed at 1026 and 1066 cm–1 (Figs. 

6 and S4) can be interpreted as the symmetric stretching ones of SO4 groups. The remaining lines in 

this region correspond to SO4 asymmetric stretching vibrations. The IR bands in the range of 900–

1040 cm–1 are symmetric stretching and, in the range of 1040–1400 cm–1, they are asymmetric 

stretching of SO4, as shown in Fig. 7. 

The 550-700 cm–1 region of Raman and IR spectra is related to ν4 bending vibrations. In this 

wavenumber range, at least seven modes can be resolved by the Raman spectra deconvolution (Fig. 

S5) and five bands can be observed in this region of IR spectra. In the 375-550 cm–1 region, six 

Raman lines related to the ν2 modes of SO4 can appear, and five peaks were resolved in the 

recorded spectrum shown in Fig. S6. The Raman spectrum measured in the case of excitation at 

514.5 nm is shown in Fig. S7 and S8, and the additional peaks related to Eu3+ photoluminescence 

lines in the region of ν2 bending modes can be clearly seen [28]. The broad bands detected at 733, 

853, 935 and 1346 cm–1 are attributed to the Eu3+ photoluminescence, too (Fig. S8). The IR bands 

related to ν2 bending vibrations are found in the range of 400–550 cm–1. The Raman lines in the 

region of 100-275 cm–1 are related to translational and rotational modes of SO4 tetrahedra, and the 

lattice modes are observed below 100 cm–1. The obtained Raman spectra indicate the absence of 

water molecules in the sample. However, the weak bands related to H2O vibrations exist in the IR 



spectrum (Fig. S9). This can be associated with the water absorption during the preparation of the 

tablets for the IR measurements. 

The luminescence spectrum of Eu2(SO4)3 obtained with the excitation wavelength of 394 nm 

is presented only by the bands which corresponded to the characteristic transitions of europium ion 

Eu3+ 5D0→
7FJ (J = 0-4):  580 nm 5D0 → 7F0; 590 nm and 590 nm 5D0 → 7F1; 614 nm 5D0 →

7F2; 652 

nm 5D0 → 7F3; 697 nm 5D0 → 7F4. The most intensive band maximized at 614 nm. The high 

resolution Eu2(SO4)3 spectra recorded using a T64000 spectrometer and 514.5 nm excitation line are 

presented in Figs. 8 and 9, in comparison with reference crystal -Eu2(MoO4)3 [28]. The 

polycrystalline samples of both compounds were taken in equal amounts for these measurements. 

Corrections on the number density of Eu3+ ion and on the variation of absorption coefficient were 

not accounted for in view of the absence of the latter data. First of all, serious variations in the 

intensities distribution between 5D0 → 7FJ manifolds, as well as the changes in the shapes of 

individual luminescent bands in Eu2(SO4)3, with respect to -Eu2(MoO4)3, are pronounced. These 

variations, evidently, are due to the modification of the local environment of Eu3+ ions in a new 

crystalline structure of Eu2(SO4)3, that have led to the change of the symmetry and the strength of 

the crystal field affecting the Eu3+ ion. Specifically, local environment of Eu ion in Eu2(SO4)3 is 

featured by weaker violation of inversion symmetry in comparison with -Eu2(MoO4)3, in contrast 

to, for example, to recent demonstration of symmetry reduction in different system of La2O3 

nanoparticles doped by europium in the course of increasing of Eu content [83]. Comparing the 

intensities of magnetic dipole transitions 5D0→
7F1, that are not affected by the parity violation 

induced by the local environment, we can deduce that the radiativeless relaxation of the 5D0 state in 

Eu2(SO4)3 is estimated as 5 times stronger than that in -Eu2(MoO4)3. The maximum luminescent 

band, namely, the hypersensitive one 5D0→
7F2, is 40 times weaker in the amplitude and 20 times 

weaker in the integral intensity in Eu2(SO4)3 than that in Eu2(MoO4)3, and this means, in addition to 

the influence of radiativeless losses, a smaller parity breaking effect of the crystal field in 

Eu2(SO4)3. Oppositely, the ultranarrow 5D0→
7F0 line in Eu2(SO4)3 is of equal amplitude with that in 



the reference crystal structure. Therefore, the breaking of the mirror symmetry of the Eu ion local 

environment in the sulfate crystal structure is considerably stronger than that in the molybdate 

crystal structure. These observations are somehow similar to those deduced from the investigation 

of another new crystalline structure with the Eu ion, namely, Rb3EuB6O12 [34]. One can also note 

the blue shift of ultranarrow transition peak to 579 nm in Eu2(SO4)3 associated with the substitution 

of molybdenum by sulfur in this new crystal structure.  

 

Conclusions 

In the present study, the structural and spectroscopic properties, and thermal stability of 

Eu2(SO4)3 have been explored for the first time. The chemical precipitation route in hard acids was 

proposed for the synthesis of anhydrous Eu2(SO4)3. It was found that Eu2(SO4)3 crystallized in the 

monoclinic structure closely related to that of -Eu2(MoO4)3 and Nd2(SO4)3. Consequently, the 

crystallization of the europium (III) sulfate in Nd2(SO4)3  structural type allows supposing that all 

sulfates of the «light» Ln sulfates (La-Eu) crystallize in the monoclinic syngony with space group 

С2/с. Passing on to the sulfates of «heavy» Ln (Gd-Lu), the symmetry enhancement takes place up 

to the orthorhombic syngony with space group Pbcn. There is a strong possibility that the change of 

structural type will be realized through the morphotropic transition related to gadolinium sulfate. 

The luminescence measurements of anhydrous Eu2(SO4)3 indicate that the radiativeless deexcitation 

of 5D0 state in this crystal is estimated as 5 times stronger than that in closely structured -

Eu2(MoO4)3. However, the peak luminescence at the hypersensitive 5D0→
7F1 transition is 40 times 

weaker, indicating a smaller effect of the parity breaking by the crystal field. At the same time, the 

ultranarrow 5D0→
7F1 transition luminescence in Eu2(SO4)3 is of the same amplitude as that in -

Eu2(MoO4)3, evidencing a stronger mirror symmetry violation at the europium ion site.  
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Table 1. Main Eu2(SO4)3 sample processing and refinement parameters  

Compound Eu2(SO4)3 

Sp.Gr. C2/c 

a, Å 21.2787 (8) 

b, Å 6.6322 (3) 

c, Å 6.8334 (3) 

β, º 108.002 (2) 

V, Å3 917.16 (6) 

Z 4 

2θ-interval, º 7.5-140 

Rwp, % 1.31 

Rp, % 1.18 

Rexp, % 0.84 

χ2 1.56 

RB, % 0.59 

 

 

Table 2. Particle size values obtained for Eu-containing compounds 

 

Compound Eu2(SO4)3 Eu2(SO4)38(H2O) Eu2O2SO4 

Average crystal 

size, nm 
64.4(4) 69(1) 89(1) 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Correlation diagram between the Td point symmetry, C1 sites symmetry and the C2h factor 

group symmetry for S1O4 in Eu2(SO4)3 

Wavenumber, cm–1 

[60] 

Td 

Point group 

C1 

Site symmetry 

C2h 

Factor group 

symmetry 

983 A1 (ν1) A Ag+Au+Bg+Bu 

450 E(ν2) 2A 2Ag +2Au+ 2Bg+ 2Bu 

1105 F2(ν3) 3A 3Ag+3Au+3Bg+3Bu 

611 F2(ν4) 3A 3Ag+3Au+3Bg+3Bu 

 

 

 

 

Table 4. Correlation diagram between the Td point symmetry, C2 site symmetry and the C2h factor 

group symmetry for S2O4 in Eu2(SO4)3 

Wavenumber, cm–1 

[60] 

Td 

Point group 

C2 

Site symmetry 

C2h 

Factor group 

symmetry 

983 A1 (ν1) A Ag+Au 

450 E (ν2) 2A 2Ag+2Au 

1105 F2 (ν3) A+2B Ag+Au+2Bg+2Bu 

611 F2 (ν4) A+2B Ag+Au+2Bg+2Bu 

 

 

 

 

 

 

 

 

 

 

 



Captions 

 

Fig. 1. The digital image of Eu2(SO4)3 powder under the Sun day illumination. 

Fig. 2. The measured (red), calculated (black) and differential (blue) diffraction patterns of  

Eu2(SO4)3. 

Fig. 3. The crystal structure of Eu2(SO4)3. The unit cell is outlined. Lone oxygen atoms are omitted 

for clarity. 

Fig. 4. SEM pattern of Eu(SO4)3 powder. 

Fig. 5. TG/DSC of Eu2(SO4)3.  

Fig. 6. The Raman spectrum of Eu2(SO4)3. 

Fig. 7. The IR spectrum of Eu2(SO4)3. 

Fig. 8. High resolution luminescence spectra of Eu2(SO4)3 (red, multiplied by 40) and of the 

reference crystal (-Eu2(MoO4)3) (blue) excited at 514.5 nm.  

Fig. 9. High resolution luminescence spectra of Eu2(SO4)3 (red) and of the reference crystal (-

Eu2(MoO4)3) (blue) excited at 514.5 nm in the vicinity of ultranarrow 5D0 → 7F0 transition. 
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