СТРУКТУРА ОКСОНИЕВОГО СОЕДИНЕНИЯ ГЕКСАХЛОРИДОСТАННАТА(IV) ПЕФЛОКСАЦИНИУМА

© 2017 А. Д. Васильев^{1,2}, Н. Н. Головнев^{1,*}

¹Сибирский федеральный университет, г. Красноярск

²Учреждение Российской академии наук Институт физики им. Л.В. Киренского СО РАН, г. Красноярск

Поступила в редакцию

Определена структура (СІF файл ССDС №1450034) гидрата трис{гексахлоридостанната(IV)}-гексахлорида-тетракис(пефлоксациниума)-тетраоксония, $4\text{PefH}_3^{2+}, 4\text{H}_3\text{O}^+, 3\text{SnCl}_6^{2-}, 6\text{Cl}^-, 11\text{H}_2\text{O}$ (**I**), (PefH — пефлоксацин). Кристаллы **I** триклинные: $a=13.5474(10),\ b=15.2859(11),\ c=15.6586(11)$ Å, $\alpha=94.467(1),\ \beta=105.477(1),\ \gamma=111.560(1)^\circ,\ V=2849.9(4)$ ų, пр. гр. PT, Z=2. В независимой части ячейки содержатся по два катиона PefH_3^{2+} и H_3O^+ , полтора аниона SnCl_6^{2-} (с атомами Sn в частных позициях), три Cl^- и $5.5\text{H}_2\text{O}$. Структура стабилизирована многочисленными межмолекулярными водородными связями и π - π -взаимодействием между ионами PefH_3^{2+} .

Ключевые слова: катион пефлоксациниума, катион оксония, гексахлоридостаннат(IV)-анион, хлорид-ион, ионное соединение, кристаллическая структура

Пефлоксацин (PefH, $C_{17}H_{20}FN_3O_3$) является эффективным противомикробным средством из группы фторхинолонов с широким спектром бактерицидного действия [1, 2]. Из-за низкой растворимости [3] применяются его соли, обычно пефлоксациниум метасульфонат, PefH₂(CH₃SO₃) [1]. Дальнейший поиск других солей PefH с улучшенными физическими свойствами представляет практический интерес. В сильнокислой среде фторхинолоны (FxH) протонируются и часто образуют хорошо окристаллизованные соли, содержащие катионы FxH_2^+ и FxH_3^{2+} [4].

С рамках систематического исследования закономерностей супрамолекулярной организации в ионных соединениях ципрофлоксацина нами синтезировано новое

соединение $4\text{PefH}_3^{2+}, 4\text{H}_3\text{O}^+, 3\text{SnCl}_6^{2-}, 6\text{Cl}^-, 11\text{H}_2\text{O}$ (**I**) и методом PCA определена его кристаллическая структура.

Пока [4] структурно охарактеризовано одно соединение фторхинолонов, содержащее ион оксония H_3O^+ , Ni(EnrH) $_2^{2+}$,2EnrH,SiW $_{12}O_{40}^{4-}$,2H $_3O^+$ [5] (код в КБСД ОDAFOO), оно обладает противораковой активностью. Фторхинолоновые соли легко образуют гидраты [4]. Гидраты кислых солей, в том числе содержащие катионы оксония H_3O^+ или другие ионы $H(H_2O)_n^+$, могут иметь высокую протонную проводимость. Следует отметить, что в настоящее время поиск новых протонных проводников является актуальным [6]. Известно только одно соединение, в состав которого одновременно входят фторхинолон и анион $SnCl_6^{2-}$, {[$K_2(CfH)_2$] $_2^{2+}$ [$SnCl_6^{2-}$ } $_n$, где CfH — ципрофлоксацин [7] (код ONEJEX).

Экспериментальная часть. Пефлоксацин (CAS 70458-92-3, Sigma-Aldrich, \geq 98%), SnCl₄·5H₂O (CAS 10026-06-9, Sigma-Aldrich, 98%) и 12М HCl (XЧ) использовали без дополнительной очистки.

Синтез **I**. К 0.2 г (0.6 ммоль) РеfH добавляли 2 мл HCl. Смесь нагревали при 80 °C до полного растворения PefH, затем к раствору по каплям добавляли горячий раствор (80 °C), полученный растворением 0.42 г (1.2 ммоль) SnCl₄·5H₂O в 2 мл HCl. Желтый раствор медленно охлаждали до комнатной температуры и выдерживали в течение 2 суток при комнатной температуре в открытом сосуде. Образовавшийся желтый кристаллический осадок отфильтровывали и промывали ацетоном. Выход по PefH около 70%. Желтые монокристаллы соединения **I** получали при медленном испарении фильтрата в течение 2-3 недель, их отфильтровывали и сушили между листами фильтровальной бумаги.

РСА. Для структурного исследования был отобран желтый кристалл размерами 0.40×0.38×0.12 мм. Интенсивности отражений измерены с помощью рентгеновского монокристального дифрактометра SMART APEX II с ССD детектором (Bruker AXS), МоК_α-излучение. Экспериментальные поправки на поглощение введены с помощью программы SADABS [8] multi-scan методом. Модель структуры установлена прямыми методами (SHELXT [9]) и уточнена с помощью комплекса SHELXL [10]. Параметры эксперимента и результаты уточнения структуры приведены в табл. 1. Структура депонирована в Кембриджском банке структурных данных (КБСД) и имеет номер ССDС-1450034. Данные могут быть получены через сайт www.ccdc.cam.ac.uk/data_request/cif.

Результаты и их обсуждение. Синтезы электронной плотности показали, что в кристаллической ячейке содержатся четыре молекулы перфлоксацина, три октаэдрические группы SnCl₆ (с атомами Sn в частных позициях), 6 атомов хлора и 16 атомов кислорода (предположительно молекул воды). Атомы водорода молекул перфлоксацина надёжно проявились на разностных синтезах и уточнялись в состоянии

"наездника". Атомы Н молекул воды также определялись из разностных синтезов. При анализе модели структуры было установлено, что в независимой части кристаллической ячейки отрицательный заряд на 2 единицы больше положительного. Детальный анализ электронной плотности позволил предположить наличие у двух атомов О "воды" трёх атомов водорода, т.е существование в структуре двух ионов оксония H_3O^+ . Обе тройки атомов Н распределены около атомов О пирамидально; дальнейшее их уточнение выполнено с заданием фиксированных расстояний О—Н и Н—Н (как и для молекул воды). Атомы кислорода ионов H_3O^+ далее обозначены как Oh1 и Oh2 (см. рисунок, табл. 2). Длины связей и валентные углы для иона Pef H_3^{2+} в I совпадают с установленными ранее в его тетрагалогенидах d-металлов [11–13]. В ионах $SnCl_6^{2-}$ расстояния Sn-Cl находятся в интервале от 2.4107(11) до 2.4456(10)Å, а наибольшее отличие в углах Cl-Sn-Cl от 90° равно 1.5° , что согласуется с геометрическими параметрами $SnCl_6^{2-}$ в других соединениях [4].

Параметры водородных связей (**BC**) и укороченных контактов C–H···Cl(O, F) в **I** представлены в табл. 2. В катионе PefH₃²⁺ имеется две характерные для фторхинолонов внутримолекулярные BC (O—H···O, C—H···F). Ион PefH₃²⁺ участвует всего в двух межмолекулярных BC: N3—H···Cl и O3—H···Cl. Все три атома H каждого иона оксония задействованы в BC как с молекулами воды, так и с атомами хлора. Атомы О этих молекул не являются акцепторами BC. Все атомы О молекул воды выступают в качестве акцепторов BC, а через связанные с ними атомы H они также являются донорами BC. У атома Оw6 коэффициент заполнения позиции равен 0.5, и хотя атомы H при нём не локализованы их BC с Cl2 (Ow6—Cl2 3.335Å) и Cl33 (Ow6—Cl33 2.531Å) вполне возможны (на рисунке гипотетические атомы H при Ow6 изображены пустыми кружками). Таким образом, все атомы H молекул воды, скорее всего, участвуют в BC.

СПИСОК ЛИТЕРАТУРЫ

- 1. Padeiskaya E.N. Prevention, Diagnosis, and Pharmacotherapy of Some Infectious Diseases (Bioinform, Moscow, 2002) (in Russian)
- 2. Mitsher L.A. // Chem. Rev. 2005. **105**, № 2. C. 559–585.
- 3. Zhang C.-L., Wang Y. J. // Chem. Eng. Data. 2008. 53. P. 1295-1297.
- 4. Cambridge Structural Database. Version 5.37. University of Cambridge, UK, November. 2015.
- 5. Sha J., Sun L., Zheng E. etc al. // J. Coord. Chem. 2013. **66**, № 4. P. 602–611.
- 6. Ярославцев А.Б. Химия твердого тела. М.: Научный мир, 2009. –328 с.
- 7. Kyprianidou P., Tsoukalas C., Chiotellis A. et al. // Inorg. Chim. Acta. 2011. **370**. P.236–242.
- 8. Sheldrick G.M. SADABS. Version 2.01. Madison (WI, USA): Bruker AXS Inc., 2004.
- 9. Sheldrick G.M. // Acta Cryst. 2015. **A71**. P. 3–8.
- 10. Sheldrick G.M. // Acta Cryst. 2015. **C71**. P. 3–8.
- 11. Васильев А.Д., Головнев Н.Н.// Журн. структур. химии. 2010. 51, № 1. С.182–185.
- 12. Головнев Н.Н., Наумов Н.Г., Головнева И.И., Дорохова Н. В. // Журн. структур. химии. -2011. -52, № 5. -C.1011-1015.
- 13. Васильев А.Д., Головнев Н.Н. // Журн. неорган. химии. 2012. 57, № 2. С. 293–296.

Таблица 1. Экспериментальные данные и параметры уточнения структуры ${f I}$

Температура, К	296				
Пространственная группа	PΤ				
Z	2				
2θ _{тах} , градусы	52				
a, b, c, Å	13.5474(10), 15.2859(11), 15.6586(11)				
α, β, γ градусы	94.467(1), 105.477(1), 111.560(1)				
V, Å ³	2849.9(4)				
<i>d</i> , г/см ³	1.645				
μ, мм ⁻¹	1.291				
Всего измерено отражений	22385				
Независимых отражений	10890				
Число отражений с <i>F</i> >4о _F	7344				
Пределы по h, k, l	$-16 \le h \le 16; -18 \le k \le 18; -19 \le l \le 19$				
Результаты уточнения					
D	$w = [\sigma^2 + (0.0297P)^2]^{-1}$				
Весовое уточнение по F^2	где $P = (max(F_o^2, 0) + 2F_c^2)/3$				
Число уточняемых параметров	698				
$R1 [F_o > 4\sigma(F_o)]$	0.0399				
wR2	0.0835				
GooF	1.009				
$(\Delta \rho)_{\text{max}}/(\Delta \rho)_{\text{min}}, e/\mathring{A}^3$	0.95/-0.40				
$(\Delta/\sigma)_{\rm max}$	0.035				

Таблица 2. Водородные связи (Å, град.) и укороченные контакты в структуре. Первая цифра в обозначении атома соответствует номеру молекулы

D—H	d(D—H)	d(H···A)	∠DHA	d(D···A)	A	Преобразование для атома А
N13—HN13	0.89(4)	2.46(4)	170(3)	3.343(4)	<i>Cl</i> 31	[x, y, z]
O11—HO11	0.82	1.87	146	2.584(4)	<i>O</i> 12	[x, y, z]
O13—HO13	0.82	2.12	162	2.912(3)	Cl2	[1-x, 1-y, 1-z]
N23—HN23	0.88(4)	2.19(4)	167(4)	3.048(4)		[x, 1+y, z]
O21—HO21	0.82	1.83	145	2.546(4)	<i>O</i> 22	[x, y, z]
O23—HO23	0.82	2.21	171	3.020(3)	Cl3	[1-x, 1-y, -z]
Ow1—Hw11	0.98(5)	2.48(3)	146(5)	3.332(3)	<i>Cl</i> 31	[-x, 1-y, -z]
Ow1—Hw12	0.98(5)	2.36(4)	160(4)	3.295(3)	<i>Cl</i> 11	[x, y, z]
Ow2—Hw21	0.95(5)	2.43(4)	136(3)	3.181(4)	Cl3	[x, y, z]
Ow2—Hw22	0.99(5)	2.16(4)	178(4)	3.147(4)	Cl3	[x-1, y-1, z]
Ow3—Hw31	0.98(5)	2.14(4)	172(5)	3.116(4)	Cl2	[x, y, z]
Ow3—Hw32	0.98(5)	2.43(4)	152(5)	3.324(4)	Cl1	[-x, -y, 1-z]
Ow4—Hw41	0.99(5)	1.64(6)	179(3)	2.631(6)	Ow3	[x, y, z]
Ow4—Hw42	0.98(5)	2.29(4)	171(3)	3.264(4)	<i>Cl</i> 32	[x, y, z]
Ow5—Hw51	0.98(5)	1.69(3)	164(4)	2.645(5)	Ow6	[1-x, -y, 1-z]
Ow5—Hw52	0.98(5)	2.04(3)	174(5)	3.016(4)	Cl1	[x, y, z]
Oh1—Hh11	0.98(5)	1.47(4)	164(4)	2.429(5)	Ow5	[x, 1+y, z]
Oh1—Hh12	0.98(5)	1.60(4)	169(4)	2.569(5)	Ow1	[x, y, z]
Oh1—Hh13	0.98(5)	2.13(4)	170(3)	3.096(4)	Cl3	[x-1, y, z]
Oh2—Hh21	0.98(5)	1.52(4)	170(4)	2.494(5)	Ow2	[x, y, z]
Oh2—Hh22	0.98(5)	1.44(4)	164(5)	2.403(6)	Ow4	[x, y, z]
Oh2—Hh23	0.98(5)	2.61(4)	151(3)	3.502(4)	Cl22	[x, y, z]
Oh2—Hh23	0.98(5)	2.70(4)	119(3)	3.285(4)	Cl23	[x, y, z]
C12—H12	0.93	2.72	165	3.622(4)	Cl1	[x, 1+y, z]
C114—H11A	0.97	2.22	123	2.871(4)	<i>F</i> 1	[x, y, z]
C114—H11A	0.97	2.91	133	3.651(4)	Cl3	[x-1, y-1, z]
C115—H11D	0.97	2.95	149	3.821(4)	Cl2	[x-1, y, z]
C113—H11F	0.96	2.84	152	3.720(5)	Cl2	[x-1, y, z]
C113—H11G	0.96	2.81	128	3.483(5)	<i>Cl</i> 33	[-x, -y, -z]
C116—H11I	0.97	2.76	151	3.638(4)	<i>Cl</i> 12	[-x, 1-y, -z]
C117—H11J	0.97	2.88	136	3.640(4)	<i>Cl</i> 13	[x, y, z]
C117—H11K	0.97	2.86	141	3.666(4)	<i>Cl</i> 11	[x, y, z]
C211—H21B	0.97	2.70	142	3.522(4)	<i>Cl</i> 23	[x, y, z]
C212—H21D	0.96	2.57	158	3.472(5)	<i>O</i> 21	[1-x, 1-y, -z]
C22—H22	0.93	2.84	167	3.751(4)	<i>Cl</i> 33	[x, y, z]
C214—H21G	0.97	2.19	123	2.838(5)	<i>F</i> 2	[x, y, z]
C215—H21I	0.97	2.89	133	3.627(4)	Cl2	[x, 1+y, z]
C213—H21O	0.96	2.91	151	3.776(5)	Cl1	[1-x, 1-y, 1-z]
C213—H21P	0.96	2.92	155	3.817(5)	Cl3	[x, y, z]
C216—H21L	0.97	2.93	137	3.700(4)	<i>Cl</i> 21	[1-x, 1-y, 1-z]
C216—H21M	0.97	2.66	133	3.390(5)	<i>O</i> 22	[1-x, 1-y, -z]
C217—H21J	0.97	2.78	133	3.517(4)	<i>Cl</i> 22	[1-x, 1-y, 1-z]

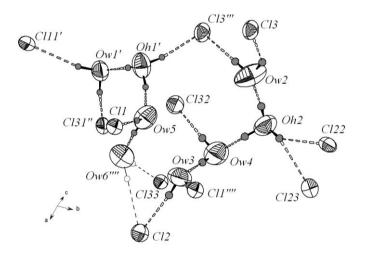


Рис. 1. Схема образования ВС молекулами воды и катионами оксония. Один штрих в обозначении атома означает преобразование [x, y-1, z], два штриха - [-x, -y, -z], три - [-x, -y, 1-z], четыре - [1-x, -y, 1-z].