ВЫСОКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА НоВіGeO5 И ЕгВіGeO5 Л.Т. Денисова¹*, Ю.Ф. Каргин²,Н.В. Белоусова¹, Н.А. Галиахметова¹ В.М. Денисов¹

¹Институт цветных металлов и материаловедения Сибирского федерального университета, Россия, 660041 Красноярск, Свободный пр., 79

²Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Россия, 119991 Москва, Ленинский пр., 49

*e-mail: antluba@malil.ru

Поступила в редакцию

Твердофазным синтезом из стехиометрических смесей Ho₂O₃ (Er₂O₃), Bi₂O₃ и GeO₂ получены соединения HoBiGeO₅ и ErBiGeO₅. Методом дифференциальной сканирующей калориметрии исследовано влияние температуры на теплоемкость полученных соединений в интервале 350-1000 K. По экспериментальным $C_p = f(T)$ данным рассчитаны термодинамические функции (изменения энтальпии, энтропии И приведенной энергии Гиббса) тройных оксидов.

Ключевые слова: твердофазный синтез, германаты висмута гольмия и висмута эрбия, высокотемпературная теплоемкость, термодинамические свойства.

ВВЕДЕНИЕ

В работах [1–4] приведены данные о получении сложных оксидных соединений с общей формулой $R_x Bi_{2-x} GeO_5$ (R = Y, Sm–Yb; $0 \le x \le 2$). При x

= 2 образуются германаты редкоземельных элементов R_2GeO_5 , а при x = 0 - 1германат висмута Bi₂GeO₅. Следует отметить, что сведения о фазовых равновесиях в системах R₂GeO₅-Bi₂GeO₅ отсутствуют, а соединения Bi₂GeO₅ на равновесной диаграмме состояния Bi₂O₃-GeO₂ нет, и оно является метастабильным [5, 6]. Если для соединений R_xBi_{2-x}GeO₅ имеются данные об их структуре [2 - 4], фотолюминесценции [3, 4], оптическим свойствам [4], то сведения о теплофизических свойствах имеются только для YBiGeO₅, GdBiGeO₅ [7] и SmBiGeO₅ [8]. Для уточнения фазовых термодинамики необходимы равновесий методами сведения 0 термодинамических свойствах подобных соединений, которых В литературе нет

Целью настоящей работы является исследование высокотемпературной теплоемкости и определение термодинамических свойств HoBiGeO₅ и ErBiGeO₅.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для измерения теплоемкости образцы HoBiGeO₅ и ErBiGeO₅ получали твердофазным синтезом из Ho₂O₃ (Er₂O₃) "х.ч", Bi₂O₃ "ос.ч" и GeO₂ (99.996). Стехиометрические смеси предварительно прокаленных оксидов (Ho₂O₃, Er₂O₂ и GeO₂ – 1173 K, Bi₂O₃ – 873 K) перетирали в агатовой ступке и прессовали в таблетки. Их последовательно обжигали на воздухе при 1003, 1073 1123 K (по 20 ч), 1143 K 910 ч) и 1223 K (100 ч). Для достижения полноты протекания твердофазного взаимодействия таблетки перетирали через каждые 10 ч и снова прессовали. Контроль состава полученных образцов проводили с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD PANalytical, Нидерланды, CuK_α – излучение) подобно [7,9]. Полученные результаты показаны на рис. 1.

Теплоемкость измеряли на приборе STA 449 C Jupiter (NETZSCH, Германия) в платиновых тиглях с крышкой. Методика измерений теплоемкости описана ранее [10]. Экспериментальные результаты обрабатывали с помощью пакета анализа NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12 ("Systat Software Inc, CШA).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Параметры решеток HoBiGeO₅ и ErBiGeO₅ в сравнении с данными других авторов приведены в табл. 1. Видно, что полученные нами результаты достаточно хорошо согласуются с данными [4].

Влияние температуры на теплоемкость HoBiGeO₅ и *ErBiGeO*₅ показано на рис. 2. Видно, что с ростом температуры значения C_p закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет экстремумов.

Это может свидетельствовать о том, что в исследованном интервале температур соединения HoBiGeO₅ и ErBiGeO₅ не имеют полиморфных превращений. Установлено, что полученные данные могут быть описаны классическим уравнением Майера-Келли

$$C_p = a + bT + cT^{-2}, \tag{1}$$

которое для HoBiGeO₅ и ErBiGeO₅ имеет соответственно следующий вид:

$$C_p = (171.79 \pm 0.68) + (57.1 \pm 0.7) \times 10^{-3}T - (18.36 \pm 0.73) \times 10^5 T^{-2}, (2)$$
$$C_p = (182.80 \pm 0.73) + (28.3 \pm 0.8) \times 10^{-3}T - (21.89 \pm 0.78) \times 10^5 T^{-2}. (3)$$

Максимальное отклонение экспериментальных точек от рассчитанных по уравнениям (2) и (3) равно 0.60 и 0.64 %. Коэффициенты корреляции для этих уравнений равны 0.9991 и 0.9976 соответственно.

С использованием соотношений (2) и (3) по известным термодинамическим уравнения рассчитаны термодинамические функции HoBiGeO₅ и ErBiGeO₅: изменения энтальпии $H^{\circ}(T) - H^{\circ}(350 \text{ K})$, энтропии $S^{\circ}(T) - S^{\circ}(350 \text{ K})$ и приведенной энергии Гиббса $\Phi^{\circ}(T)$. Эти данные приведены в табл. 2. Можно отметить, что при температурах > 700 K значения C_p превышают предел Дюлонга-Пти 3*Rs*, где *R* - универсальная газовая постоянная, s – число атомов в формульной единице RBiGeO₅.

При анализе свойств РЗЭ и их соединений учитывают существование тетрад-эффекта, выделяя четыре группы: La-Nd, Pm-Gd, Gd-Ho, Er-Lu [11].

В работе [12] было показано, что значения удельной теплоемкости c_p^o разных оксидных соединений на основе РЗЭ (купраты, ортованадаты, гранаты) закономерно изменяются в зависимости от ионного радиуса в пределах соответствующих тетрад. Из рис. 3 видно, что в целом подобная связь наблюдается и для соединений RBiGeO₅. Значения c_p^o для R₂O₃ взяты из работы [13], GdBiGeO₅ – [7, 14]. Для остальных соединений значения c_p^o получены нами. Значения ионных радиусов РЗЭ приведены в [15].

Сравнить полученные нами значения c_p^0 для HoBiGeO₅ и ErBiGeO₅ с данными других авторов не представлялось возможным, поскольку теплоемкость соединений RBiGeO₅ ранее не измерялась. Сделать это можно по уравнению Неймана-Коппа [13] c^0

$$c_{p298}^{o}(j) = \sum_{i} m_{i} c_{p298}^{o}(i), \qquad (4)$$

где $c_{p298}^{o}(j)$ - удельная теплоемкость сложного оксидного соединения, $c_{p298}^{o}(i)$ - удельная теплоемкость *i*-го простого оксида, m_i – мольная доля соответствующего простого оксида, или инкрементным методом Кумока [16]. Рассчитанные по уравнению (4) значения c_p^{o} для HoBiGeO₅ и ErBiGeO₅ равны 0.38 Дж/(г К),что несколько выше полученных значений 0.32 Дж/(г К). Необходимые для расчета значения c_p^{o} для Ho₂O₃. Er₂O₃, Bi₂O₃ и GeO₂ взяты из работы [13]. Наблюдаемые как положительные, так и отрицательные отклонения от аддитивного правила Неймана-Коппа, по мнению [17], отражают изменения в частотах колебаний атомов в сложном оксидном соединении по сравнению с простыми оксидами. В то же время расчет c_p^0 для этих соединений инкрементным методом Кумока дает близкие к экспериментальным величины 0.31 Дж/(г К).

ЗАКЛЮЧЕНИЕ

Методом дифференциальной сканирующей калориметрии в области 350-1000 К измерена высокотемпературная теплоемкость HoBiGeO₅ и ErBiGeO₅. Установлено, что температурные зависимости теплоемкости этих соединений описываются классическим уравнением Майера-Келли. На основании зависимостей $C_p = f(T)$ рассчитаны их термодинамические свойства.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства образования и науки Российской Федерации Сибирскому федеральному университету на 2017-2019 годы (проект 4.8083.2017/8.9 «Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы»).

СПИСОК ЛИТЕРАТУРЫ

- Бондарь И.А., Виноградова Н.В., Демьянец Л.Н. и др. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. М.: Наука, 1983. 288 с.
- Cascales C., Campa J.A., Puebla E.G. et al. New rare-earth (Y,Yb) bismuth germinates, An initial study of a promising series // J. Mater. Chem. 2002. V. 12. P. 36-26.
- Cascales C., Zaldo C. Crystal-fild analysis of Eu³⁺ energy levels in the new rare-earth BiY_{1-x}R_xGeO₅ oxide // J. Solid State Chem. 2003. V. 173. P. 262-267.
- Cascales C., Zaldo C. Spectroscopic Characterization and Systematic Crystal-Fild Modeling of Optically Active Rare Earth R³⁺ Ions in the Bismuth Germanate BiY_{1-x}R_xGeO₅ Host // Chem. Mater. 2006. V. 18. P. 3742-3753.
- Каргин Ю.Ф., Бурков В.И., Марьин А.А. и др. Кристаллы Ві₁₂М_хО_{20±δ}
 со структурой силленита. Синтез, строение, свойства. М.: ИОНХ, 2004. 316 с.
- Жереб В.П. Метастабильные состояния в оксидных висмутсодержащих системах. М.: МАКС Пресс, 2003. 163 с.

- Денисова Л.Т., Белоусова Н.В., Галиахметова Н.А. и др.
 Высокотемпературная теплоемкость YBiGeO₅ и GdBiGeO₅ в области 373-1000 К // Физика твердого тела. 2017. Т. 59. № 5. С. 1019-1022.
- Денисова Л.Т., Белоусова Н.В., Галиахметова Н.А. и др. Высокотемпературная теплоемкость Bi₂GeO₅ и SmBiGeO₅ // Физика твердого тела. 2017. Т. 59. № 8. С. 1659-1662.
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Высокотемпературная теплоемкость и колебательные спектры Eu₂Sn₂O₇ // Неорган. материалы. 2016. Т. 52. № 8. С. 874-877.
- Денисов В.М., Денисова Л.Т., Иртюго Л.А. и др. Теплофизические свойства монокристаллов Ві₄Ge₃O₁₂ // Физика твердого тела. 2010. Т. 52. № 7. С. 1274-1277.
- 11. Третьяков Ю.Д., Мартыненко Л.И., Григорьев А.Н. и др.
 Неорганическая химия. Химия элементов. М.: Химия, 2001. Т. 1. 472
 с.
- 12. Денисова Л.Т., Каргин Ю.Ф., Денисов В.М. Теплоемкость редкоземельных купратов, ортованадатов и алюмо-, гало- и феррогрататов // Физика твердого тела. 2015. Т. 57. № 8. С. 1658-1662.
- Leitner J., Chuchvalec P., Sedmidubský D. et al. Estimation of heat capacities of solid mixed oxides // Thermochim. Acta. 2003. V. 395. P. 27-46/

- 14. Денисова Л.Т., Изотов А.Д., Каргин Ю.Ф. и др.
 Высокотемпературная теплоемкость GdBiGeO₅ в области 373-1000 К
 // ДАН. 2017. Т. 473. № 4. С. 449 452.
- 15.Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Cryst. 1976.
 V. A32. P. 751-767.
- 16. Моисеев Г.К., Ватолин Н.А., Маршук Л.А. и др. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA. OWN). Екатеринбург: УрО РАН, 1997. 230 с.
- 17. Резницкий А.А. Калориметрия твердого тела. М.: МГУ, 1981. 184 с.

Параметры	HoBiGeO ₅		ErBiGeO ₅	
a, Å	5.3267(3)	5.3380(1)	5.3230(8)	5.3245(2)
b, Å	15.1865(9)	15.2351(2)	15.212(1)	15.2258(4)
с, Å	11.0337(7)	11.0541(1)	11.017(2)	11.0157(3)
V, Å ³	892.58(9)	898.97(2)	892.1(2)	893.04
Пр. гр.	Pbca	Pbca	Pbca	Pbca
Источник	[4]	Настоящая	[4]	Настоящая
		работа		работа

Таблица 1. Параметры элементарных ячеек HoBiGeO₅ и ErBiGeO₅

<i>T</i> , K	$C_p,$	$H^{\rm o}(T) - H^{\rm o}(350 {\rm K}),$	$S^{o}(T) - S^{o}(350 \text{ K}),$	$\Phi^{\mathrm{o}}(T),$		
	Дж/(моль К)	кДж/моль	Дж/(моль К)	Дж/(моль К)		
HoBiGeO ₅						
350	176.8	_	_	_		
400	183.2	9.00	24.04	1.53		
450	188.4	19.30	45.92	5.26		
500	193.0	27.83	66.01	10.35		
550	197.1	37/59	84.61	16.26		
600	200.9	47.54	101.9	22.69		
650	204.6	57.68	118.1	29.41		
700	208.0	67.99	133.4	36.30		
750	211.3	78.48	147.9	43.26		
800	214.6	89.13	161.6	50.24		
850	217.8	99.94	174.7	57.18		
900	220.9	110.9	187.3	64.06		
950	224.0	122.0	199.3	70.87		
1000	227.1	133.3	210.9	77.58		
ErBiGeO ₅						
350	174.8	—	—	_		
400	180.4	8.89	23.73	1.51		
450	184.7	18.02	45.24	5.19		
500	188.2	27.35	64.89	10.19		
550	191.1	36.83	82.97	16.00		
600	193.7	46.46	99.71	22.29		
650	196.0	56.20	115.3	28.85		
700	198.2	66.05	129.9	35.55		
750	200.1	76.01	143.7	42.30		
800	202.0	86.07	156.6	49.05		
850	203.8	96.21	168.9	55.74		
900	205.6	106.5	180.6	62.36		
950	207.3	116.8	191.8	68.88		
1000	208.9	127.2	202.5	75.29		

Таблица 2. Термодинамические свойства HoBiGeO₅ и ErBiGeO₅

Подрисуночные подписи к статье Денисовой Л.Т. и др. "Высокотемпературная теплоемкость и термодинамические свойства HoBiGeO₅ и ErBiGeO₅"

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограмм HoBiGeO₅ (*a*) и ErBiGeO₅ (δ) (штрихи указывают расчетные положение рефлексов).

Рис. 2. Влияние температуры на молярную теплоемкость HoBiGeO₅ (1) и ErBiGeO₅ (2): точки – эксперимент, линия – аппроксимирующая кривая.

Рис. 3. Изменение стандартной теплоемкости соединений R_2O_3 (1) и RBiGeO₅ (2) в зависимости от радиуса иона R^{3+} .

Рис. 1 к статье Денисовой Л.Т. и др. "Высокотемпературная теплоемкость и термодинамические свойства HoBiGeO₅ и ErBiGeO₅"

Рис. 2 к статье Денисовой Л.Т. и др. "Высокотемпературная теплоемкость и термодинамические свойства HoBiGeO₅ и ErBiGeO₅"

Рис. 3 к статье Денисовой Л.Т. и др. "Высокотемпературная теплоемкость и термодинамические свойства HoBiGeO₅ и ErBiGeO₅"