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Abstract. 

Composite materials fabricated by annealing of nonsuperconducting ceramics La2CuO4 and 

La1.56Sr0.44CuO4 at 910° C during various time are investigated. Areas of superconducting 

La1.85Sr0.15CuO4 phase arises at boundaries of contacting nonsuperconducting granules. The volume 

fraction of the superconducting phase increases with increasing the annealing time. A model 

describing the magnetic and transport properties of the samples at low magnetic fields is 

constructed. The magnetotransport characteristics of obtained samples at low magnetic fields (~ 100 

Oe) are defined by a weak links network formed by superconducting areas. At high fields behavior 

of the system is defined by a magnetization of the disconnected superconducting islands. The 

average size of the superconducting areas has been estimated from an extended critical state model.  
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1. Introduction 

The classical superconductor La2-xSrxCuO4 (LSCO) is studied since 1986. Its concentration 

phase diagram is known in the entire range of x [1]. La2CuO4 (LCO) is a weak ferromagnetic with a 

Neel temperature TN = 500 K and it is dielectric. At x > 0.25, La2-xSrxCuO4 is a nonsuperconducting 

metal. 

Recently [2,3], it was shown that an interface superconductivity arises on the boundary of 

LCO and La1.56Sr0.44CuO4 films. Study of such films is limited by the complexity of their synthesis 

(a layer-by-layer molecular beam epitaxy). A solid-phase synthesis does not require the complicated 

tools and is a simple method for obtaining superconducting materials with a different size of grains. 

In a mixture of the over- and under-doped precursors, the diffusion of doping atoms at boundaries 

between the granules occurs. The diffusion and parameters of the superconducting phase can be 

controlled by the annealing time ta.  

In this paper, we present the results of an experimental study of samples obtained by 

annealing the mixture of LCO and La1.56Sr0.44CuO4 ceramic powders. The synthesis of samples and 

the measuring techniques is described in Section 2. Experimental results are discussed in Section 3. 

A model describing the transport and the magnetic properties of the network of weak links is 

introduced in Section 4. Conclusions are presented in Section 5. 
 

2. Materials and methods 

 The ceramic precursors of La2CuO4 and La1.56Sr0.44CuO4 were synthesized by the standard 

solid-phase synthesis technique [4]. In addition, we synthesized the optimal doped sample LCSO as 

a benchmark. Then, the LCO and La1.56Sr0.44CuO4 powders were grounded in an agate mortar and 

mixed in 0.66 / 0.34 mass proportions. The selected proportion of the components would, with 

complete diffusion of the elements, compose the superconducting phase La1.85Sr0.15CuO4. The 

mixture of LCO and La1.56Sr0.44CuO4 were annealed at T = 910° C in a preheated oven. After 

annealing, for restoring an oxygen stoichiometry, the samples were slowly cooled with the same 

rate in an air atmosphere. The diffusion coefficient of oxygen in HTSC ceramics is tenfold higher 

than that of strontium cations [5]. Hence, this cooling almost did not affect the diffusion of 

strontium. A series of the samples was annealed during the time ta = 2, 6, 20, 60, 200, 600, 2000, 

6000, 20000 min.  



Scanning electron microscopy of the samples was performed on microscope Hitachi TM 

3000. Temperature dependencies of the resistance R(T) were measured by four-probe method by 

using QDS device of PPMS-6000. Samples with the parallelepiped form had dimensions of about 

1×1×10 mm
3
. Transport current was equal to 1 mA. The temperature dependencies of the 

magnetization M(T) and the magnetic field dependencies of the magnetization M(H) were 

performed by using QD PPMS-6000 magnetometer. 

 

3. Results and discussion 

Fig. 1 shows microphotographs of samples with ta = 2 and 2000 min. All the samples consist 

from irregular granules. The average granule size are estimated from microphotographs as 1.1±0.1, 

1.2±0.1, 1.3±0.1 μm for ta = 20, 200, 2000 min.  

 
Fig. 1. Microphotographs of the samples with the annealing time ta = 2 and 2000 min. 

 

Fig. 2a shows temperature dependencies of the resistance of samples with different annealing 

times. All samples demonstrate a resistance jump at Tc = 37.5 K, the critical temperature of the 

optimally doped LSCO. For the samples with ta = 6 and 20 min the resistance reaches the minimum 

at T < Tc and then grows as temperature decreases. For the samples with longer ta the resistance 

decreases at T < Tc with decreasing temperature. Only for the sample with ta = 20000 min the R(T) 

curve reaches R = 0. At any fixed temperature the resistance decreases as the annealing time ta 

increases. These facts indicate that there is the optimally doped LSCO in the samples and the 

volume fraction of the superconducting phase in the samples increases with ta. 

 

 
Fig. 2. Temperature dependencies of the resistance of samples with different annealing time ta (a) 

and the dependencies for ta = 20 min in magnetic fields (b). 

 

Fig. 2b demonstrates temperature dependencies of the resistance for the sample with ta = 20 

min in various external magnetic fields. Influence of the magnetic field on the resistance of the 

samples is clearly pronounced in Fig. 3. It shows the dependencies of the additional resistance 

ΔR(T) = R(T, H) − R(T, H = 0). In high fields (H = 20, 80 kOe) the ΔR(T) dependencies have a 

knee.  This knee shifts to lower temperatures as the field is increased. These dependencies look 

similar to the ΔR(T) dependencies of polycrystalline superconducting composites [6-8] representing 

a network of Josephson weak links. For the composites the knee indicates that the superconductivity 

is suppressed in the surface of superconducting areas. 



 

 
Fig. 3. Temperature dependencies of the additional resistance ΔR(T) = R(T, H) − R(T, H = 0) for ta 

= 6 and 200 min. 

 

 

 
Fig. 4. Dependencies of the magnetization M on the magnetic field H (a) and temperature 

dependencies of the magnetization M(T) in the ZFC regime (b). Insert shows the trapped field M(0) 

and the absolute value of the magnetization minimum |Mmin|. 

 

Magnetization hysteresis curves of the samples are typical for HTSC. Also there is an 

additional paramagnetic contribution, which is apparently provided by the LCO granules. The M(H) 

dependencies are shown on Fig. 4a (the paramagnetic contribution is subtracted for these loops). 

The M(H) dependence of the optimally doped LSCO is also presented here. The magnetization 

loops of the samples are asymmetric relative to the M = 0 axis. Fig. 4b shows temperature 

dependencies of the magnetization M(T) for some samples. The M(T) dependencies tend to zero at 

Tc = 37.5 K. This, as well as the values of Tc obtained from R(T), indicates that there is the 

optimally doped LSCO in the samples. The inset shows the dependencies of trapped field M(0) and 

the minimum of the magnetization |Mmin| on ta. The M(0) and |Mmin| values, as well as 

magnetization width ΔM, depend on the volume of the superconducting phase. The observed 

growth of these parameters is supported to be due to the increasing of the superconducting volume 

fraction in the samples with ta. 

According to the extended critical state model (ECSM) [9, 10], an asymmetry of the 

magnetization loops and the trapped field M(0) depend on the relation between the size of the 

current circulation d and the depth of the surface layer ls. Also the critical current density Jc depends 

on the d/ls ratio. From ESCM it follows that Jc ≈  Jcb(1 – 2ls/d)
3
, where Jcb is the critical current 

density of the sample with d >> ls [11]. This relation allows us to estimate the d/ls ratio from the 

observed asymmetry of magnetization loops. The critical current density Jc is given by the Bean 

formula Jc = ΔM/k, where ΔM is the irreversible magnetization, ΔM = Md - Mup, Md(H) is the 

magnetization branch for the decreasing field, Mup(H) is the magnetization branch for the increasing 

field, a parameter k is determined by the sample geometry and has the length dimension. For the 

polycrystalline sample one can use k = d/3 (in SI units) [12]. For the samples with d >> ls, the 



magnetization loop is symmetric relative to the M = 0 axis, and the irreversible magnetization ΔM 

equals 2|Mup| at the wide field range. Given Jcb ≈ (2|Mup|)/k we obtain d/ls ≈ 2/ (1–(ΔM/2|Mup|)
1/3

). 

We assume that d corresponds to an average size of the superconducting areas in the 

investigated samples. Results of the estimations of d/ls are presented in Table 1 for the values of ΔM 

and Mup at H = 4000 Ое. This field is about the full penetration field of the investigated samples.  

 

ta, min d/ls Ic, μA 

20000 - 18.5 

200 8.6±0.8 3 

60 8.5±0.7 2.2 

20 9.0±0.9 2 

6 10.7±1.3 1 

LSCO 43.3±3.3 - 

Table 1. Estimated parameters: the d/ls ratio and the critical current Ic. 

 

Given the average size of the benchmark LSCO granules to equal ~5-10 μm, the averaged 

island size d was supposed to be not higher than ~ 1 μm for all ta. Assuming the value of ls does not 

change with ta, the size d is resulted to be independent of ta within the errors. This is an unusual 

result because the volume fraction of the superconducting phase is found to grow with ta.  

Basing on experimental data we suppose that superconducting islands arise at boundaries of 

contacting granules as a result of strontium diffusion from over- to under-doped granules during the 

annealing. The stationary of the size d is an indirect confirmation of the diffusion mechanism of 

formation of the superconducting phase. When an over-doped granule contacts with an under-doped 

one, the impurities redistribute during the annealing. The redistribution forms a diffusion front [13] 

with the fixed depth. In this front, the strontium concentration is optimal for the superconducting 

phase. Before the front, the strontium concentration is insufficient, behind the concentration is 

exceeded. The depth of this front is resulted to be the size of the superconducting island. 

We suggest that two superconducting subsystems [12] are segregated in the investigated 

samples. The first is superconducting islands emerged between granules with different Sr contents. 

The second is а network of weak links formed inside and between the superconducting areas. These 

subsystems demonstrate different behavior in magnetic fields and temperatures as well as for 

polycrystalline superconductors [6, 14]. At a low magnetic field (smaller than ~100 Oe), the critical 

current of the samples is defined by the weak links network. The thermally activated phase slippage 

model (TAPS) [15] is used to describe the long transition below Tc on the R(T) dependencies of 

polycrystalline superconductors [16]. The average critical current I of weak links is used as the 

fitting parameter of TAPS. The TAPS curve for Ic = 18.2 ± 1.5 μA coincides with the R(T) 

dependence of the sample with ta = 20000 min. The R(T) dependencies of other samples are fitted 

worse. Agreement can be improved by taking into account i) the distribution function of the critical 

currents in weak links networks and ii) the temperature dependence of the resistance. By using 

approximate TAPS estimations of the averaged critical current without complicating accountings, 

we find that Ic grows with increasing ta (Table 1). 

At higher fields (H > 100 Oe) the weak links are resistive, and nondissipative supercurrents 

flow only into isolated superconducting islands. At H greater than ~10 kOe these islands contribute 

observably in the resistivity of the samples. It is because the magnetic field suppresses the 

superconductivity it the surface regions of the islands. The depth of the resistive surface region ls 

grows as the magnetic field increases. 

The number of the superconducting islands increases, as well as the critical current of the 

network, with increasing of the annealing time ta. However, even at the longest ta, total diffusion of 

strontium does not occur. The inner volume of the granules remains nonsuperconducting.  

 

 

4. Theory  

 



Now a model of the weak links network is described. This model gives the behavior of the 

samples in low fields (H ~ 100 Oe). We consider the two-dimensional task and do not account any 

temperature dependencies. Nonsuperconducting granules were placed in the cells of a disordered 

square lattice with size N   N on the x-y plane (Fig. 5a). The size of the granules along the z-axis is 

considered to be infinite. During annealing, granules contact better one to other and the 

superconducting areas emerge at the boundaries of the granules. The areas build a Josephson weak 

links network. In our model, the superconducting islands occur in some edges of cells. The shape of 

the superconducting areas is not important. We state that each superconducting area includes only 

one Josephson junction (Fig. 5b). Several weak links can occur on the superconducting area. But 

only the links with the minimal critical current determines the properties of superconducting 

circuits. Therefore this simplification does not affect the simulation of the electromagnetic 

properties of the network. 

New superconducting edges are appeared during the annealing. These edges with Josephson 

junctions form closed contours around the normal phase clusters (Fig. 5c). Such the contours are the 

centers of pining for the magnetic flux. The number of the contours and their size distribution 

determine the electromagnetic properties of the whole system. 

 
Fig. 5. The scheme of the weak links network formed by annealing. ta increases from left to right, 

bold lines indicate the superconducting boundaries, crossed circles are the Josephson junctions. 

 

Each Josephson junction is characterized by a dynamic variable, which is the gauge-invariant 

phase difference. Let us denote it as φi,j for the junctions in the "vertical" edges of cells and θi,j for 

the "horizontal" ones (Fig. 5). The grid cells are numbered from the lower left corner. The density of 

the "vertical" 

    
 

 and the "horizontal" 

    
 
 
currents, the cell area Sij and the magnetic flux Фij through 

the cell are given in Fig. 5 also. For 

    
 

 and 

    
 

, a discrete analog of Maxwell's equations is written 

(in the CGS electromagnetic system of units): 
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where Hi,j is the magnetic field in the ij-th cell of the system, d is the length of the cell edge. This 

length is equal to the average size of the superconducting islands that is estimated above. From the 

resistive model of the Josephson junction [17], the junction current consists of normal and 

superconducting components: 
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where r is the normal resistance of the junction and 

     
    

 is its critical current density. The magnetic 



flux through the cell is expressed as [18]: 
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Combining (1) - (3), we obtain a system of equations for φi,j and θi,j in the dimensionless form [19]: 
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where Ф0 is the magnetic flux quantum and Si,j is the area of the cell. For the boundary junctions, 

according to (1), Hi,j is replaced by Hext in (4). For example, at the upper boundary, it is resulted in 
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The system parameter 
𝑉   

    
 depends on the critical current of the junctions. This value 

concerns to a number of magnetic vortices in the corresponding contour. If some edge of cells does 

not contain the superconducting island and the Josephson junction then its critical current and the 

quantity 
𝑉   

    
 are equal to zero. When all 

𝑉   
    ≫ 1

, the system has a large number of metastable 

energy states. Consequently, the network demonstrates the hysteresis magnetic behavior. In the 

contrary case of all 𝑉
_ 
𝑖  

 ^ 
𝑖   

 
≪ 1, the magnetic dynamics of the network is reversible [18]. 

Using estimated values of d and Ic, the averaged <V> is found to be ~40. 

In our model, we take into account the changes that occur with the sample during the 

annealing. Initially, all the granules are considered to be not touched one to other and all values 

𝑉   
    

 equal zero. As ta increases, the granules begin to touch some nearest neighbors. The edge of 

the lattice cell, along which the granules come into contact, becomes superconducting. We 

introduce the quantity a determining the probability of arising of the new superconducting edges 

during the time cycle. Then the number of the superconducting edges is determined by ta and a. 

During annealing, the amount of the superconducting edges increases and the closed 

superconducting contours are formed. The normal clusters surrounded by the superconducting 

contours are the pinning centers. The results of 21   21 lattice modeling for the probability a = 0.01 

are presented in Fig. 6. It is seen that, the pinning centers in the system are added as ta increases. 

 

 
Fig. 6.  Simulation results. Black sections denote pinning centers (the normal clusters, surrounded 

by the closed superconducting contour).  

 



We simulate the behavior of the annealed sample in two modes. The first correspond to the 

external magnetic field Hext(t) applied along the z-axis of the sample. The second correspond to the 

direct current Iext along the x-axis of the sample. In this geometry, the demagnetization factor can be 

neglected. 

In the first case, the critical current density depends on magnetic field as 

     
          

    
  1  

        
. The values of 

     
    

 are chosen to obtain (

𝑉   
    ≥ 40

). It does not matter whether the 

critical currents of all the junctions are different or identical. The electromagnetic properties of the 

system are determined only by the mean value of the critical current. The external field is changed 

so that its dimensionless value is added by one hext→ hext+1 during the computational cycle. This 

field growth is assumed to be so slow that all the processes in the system could be completed before 

the next cycle. For each value of the external field, we calculate the dimensionless mean value of 

the magnetic field inside the sample and the magnetization: 
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As a result, the magnetization loops for various ta were computed (Fig. 7a). Here the cell areas are 

chosen to be the same and, consequently, Si,j = 1 for all cells of the system. It is seen that the 

trapped magnetic flux increases with ta as well as the M(0) values. This result qualitatively agrees 

with the experiments. The shape of the hysteresis loop is affected by the value of H0, which depends 

on the material. 

In the second case, a direct current Iext flow through the network without external magnetic 

field. We assume that the current is injected into the "horizontal" contacts of the upper and lower 

boundaries of the system (Fig. 5c). Then, the boundary conditions of (4) are changed.  At the upper 

and lower boundaries, the external magnetic field is replaced by   𝑖             
. At the right 

and left boundaries, the external field is replaced by zero. Now 

     
    

  is considered to be 

independent of the local magnetic field. The values of 

     
       

 are chosen to have V = 40. Further, 

the average voltage for horizontal contacts was calculated for various Iext by the formula: 
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The u
i
(2πiext/V) dependencies for different ta are presented in Fig. 7b. It is seen that for higher ta, the 

voltage-current curve is closer to the curve of a superconductor with jc=V/2π. The increase of 

     
    

 

is caused by the increasing number of the superconducting contours, which are able to carry the 

corresponding critical current. 

The dependence of the resistance on the external magnetic field R(H) is computed also (Fig. 

7с). The external current iext = 0.9(V/2π) flow through the sample according to the scheme in Fig. 

5c. The dependence of jc on the external magnetic field is given by jc = jc0/(1+Hij/H0) with H0 = 2. 

Fig. 7с shows, the resistance of all samples increases with h until the critical field of weak links. 

The critical field of weak links depends on the parameter H0. It is also seen that the resistance 

decreases with increasing ta. The computed R(H) dependencies qualitatively coincide with 

experimental curves of polycrystalline superconductors in low fields [6-8]. 

 



  
Fig. 7. Computed curves for some ta: magnetization loops with different H0 (a), I-V curves (b), the 

resistance R versus the external magnetic field H (c). 

 

5. Conclusions 

Annealing the mixture of powders of nonsuperconducting ceramics La2CuO4 and 

La1.56Sr0.44CuO4 we have obtained the composite samples owning superconducting properties. From 

the results of experimental investigations and numerical simulating we can conclude: 

1. The volume fraction of the superconducting phase increases with annealing time ta. 

However, even at the longest ta, the fraction of superconducting phase is smaller than 50 %. 

Consequently, complete diffusion of strontium does not occur. The superconducting phase in the 

samples is the islands of LSCO at the boundaries of the contacting over- and under- doped granules. 

The inner bulk of the granules remains nonsuperconducting. 

2. The behavior of the samples in low (< 100 Oe) magnetic fields is determined by the 

properties of the weak links network. At high magnetic field, the superconductivity of weak links is 

destroyed. Then the behavior of the system is determined by separate LSCO islands. 

Superconductivity is suppressed by magnetic field in the surface regions of the superconducting 

islands. This contribution to resistance is significant at magnetic fields higher than 10 kOe. 

3. The extended critical state model is used to estimate the average size d of the 

superconducting islands. It is shown that d does not depend on ta. This confirms the diffusion 

formation of the superconducting islands.  

4. The model of the magnetic and transport behavior of the samples in low magnetic fields is 

presented. The model adequately describes the observed physical properties of the samples. In 

addition, the model predicts the possibility to discover  some new interesting phenomena that can 

realize in our system, for example, self-organized criticality [19]. 
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