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Abstract---To establish the existence of dipole glass in the chromium-substituted bismuth 

pyrostannate solid solutions, the frequency and temperature dependences of the permittivity have 

been measured in the temperature range of 300‒750 K. The field and dynamic dependences of 

polarization in the temperature range of 80‒550 K have been determined. Using the Raman 

scattering spectra, the absence of inversion center has been established. The maximum of 

electrical resistance has been found in the vicinity of the dipole moment freezing point. The 

carrier type has been determined from the thermopower data. The polarization relaxation is 

shown to be nonexponential. The experimental data are explained within the model of dipole 

glass in the α- phase and the model of charged crystalline domain walls with the electron-

polarization relaxation mechanism above the α‒β structural transition. 

 

1. Introduction 

Multicomponent bismuth stannates, which belong to the pyrochlore and layered 

perovskite structural types, attract much attention of researchers as materials for theoretical and 

experimental investigations and are promising for application in designing novel electronic 

devices and new-generation storage systems. For instance, bismuth titanates with the layered 

perovskite structure are ferroelectrics with the high Curie temperatures, which exhibit the 

ferroelectric properties in a wide temperature range and can be applied in radio-, acousto- and 

optoelectronics, in particular, in fabricating radio capacitors, piezoelectric converters, filters, and 

pyroelectric infrared sensors [1,2]. In view of possible use of bismuth stannates as multiferroic 

and spintronic materials, substitution of magnetic ions for 3d metals in these compounds has 

been intensively investigated. Bismuth-containing niobates with a pyrochlore-type structure are 

used as a hardware components for microelectronics devices [3]. 

The search for compounds with the strong correlation of the magnetic and electrical 

properties is of great practical and fundamental importance. The interaction of the ion subsystem 

with the electron subsystem characterized by the spin and orbital magnetic moment underlies the 

diversity of physical properties. 

Bismuth pyrostannate Bi2Sn2O7 belongs to the pyrochlore family and its chemical 

formula can be written as Bi2Sn2O6O'. The Bi4O' tetrahedra in the Bi2Sn2O6O' α-phase tend to 

arrange bismuth ions in disordered rings around the ideal position with certain preference for 

ordering between neighboring bismuth atoms [4]. The average displacements of bismuth ions 

from the ring center and perpendicular to the ring are 0.044 and 0.008 nm, respectively. The 

Bi2Sn2O7 α-phase structure is interpreted as monoclinic. The energy of the monoclinic structure 

calculated using the model proposed in [5] is lower than the body-centered trigonal structure 
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energy by 0.2 eV. The 5d
10

6s
2
6p

0
 electronic configuration of a bismuth ion contains an unshared 

s electron pair. The structural distortion leads to the electron density asymmetry on the bismuth 

ion and induces the dipole moment, according to the electron density of states calculated by the 

LDA method with regard to the gradient correction of the exchange-correlation functional [6]. 

The unshared pair causes the high mobility of bismuth and oxygen atoms in the Bi4O' sublattice 

and their strong displacements from the centers of positions characteristic of the ideal pyrochlore 

structure [6]. Oxygen ions have two types of environment and can be surrounded by bismuth 

ions or by tin and bismuth ions. Substitution of different-valence ions give rise to the shift of 

oxygen ions and enhancement of the dipole moment. 

The pyrochlore compounds with magnetic ions, e.g., Yb2Ti2O7 [7] and A2Sn2O7 (A = Ho, 

Dy) stannates [8], belong to the highly frustrated systems with the short-range magnetic order 

and spin-ice state [9,10]. Current interest in spin ices has been stimulated by investigations of 

their dynamics, which are generally agreed to be controlled by the emergence of magnetic 

monopole excitations, the first example of a fractional quasiparticle in a three-dimensional 

magnet [11]. At the transition to the spin ice state, the diffuse scattering of polarized neutrons 

sharply grows. The pyrochlore compounds containing nonmagnetic ions with an unshared 

electron pair can also be considered as dielectric ice [12], whose dielectric behavior is explained 

by local hoppings of atoms in the A and O' positions between several potential minima [13]. This 

means, in fact, that the domains permanently change. Since the O' ion can occupy both positions, 

the domains will order at short distances (e.g., in Bi2Ti2O7 [5]). 

In the Bi2Ti2O6O' pyrochlore, the correlated displacements of bismuth around the ideal 

position lead to the formation of a short-range order with the averaged cubic structure [5]. This 

offers a sharp contrast to the Bi
3+

-containing BiMnO3 and BiFeO3 perovskites, where the "active 

unshared pair" in the A position causes the polar non-cubic ground states [5]. 

Thus, bismuth ions are shifted from the ring center along the Bi-O' bond and, in addition, 

in the ring plane and have six degenerate states. These displacements lead to the occurrence of 

polar states. In bismuth titanates, the dipole moments form glass. 

Substitution of tin ions to Cr
3+

 ions in Bi2Sn2O7 should remove the six-fold degeneracy of 

the dipole moment as result of the shift of bismuth to the chromium cation, which can increase 

the polarization. Heterovalent substitution can induce the electron polarization. The dielectric 

and ferroelectric properties of bismuth pyrostannate substituted by magnetoactive ions have been 

understudied. According to the structural and theoretical investigations, a dipole glass can form 

in the cubic pyrochlore structure as a result of freezing of the dipole moments of the unshared 

bismuth-oxygen electron pair. The change in the local symmetry of the structure upon cation 

substitution will enhance the effect. 

The aim of this work was to establish the correspondence of the model to the dielectric 

states in chromium-doped bismuth pyrostannate Bi2(Sn1–xCrx)2O7 (x = 0.05 and 0.1) and 

determine the correlated states of dipole moments of the dipole glass type. 

 

2. Experimental 

2.1 Sample preparation and X-ray reflectivity measurements 

 

The Bi2(Sn1-xCrx)2O7 sample was synthesized by the solid-phase reaction according to the 

scheme 

2(1 – x)SnO2 + 2xCr2O3 + Bi2O3 → Bi2(Sn1–xCrx)2O7, 
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where x = 0.05 or 0.1. The initial materials were Bi2O3, SnO2, and Cr2O3 oxides of the extra-pure 

grade. The initial oxide mixture was tableted, placed in an oven, and kept at temperatures from 

700 to 950°C for 8–24 h. 

The crystal structure of Bi2Sn2O7 at room temperature is a distorted pyrochlore structure 

[14] and undergoes three polymorphic transitions [15,16]. The α- phase of Bi2Sn2O7 has to a 

monoclinic space group P1c1 (β = 90.04) without inversion center, 176 crystallographically 

independent atoms and thermodynamically stable up to 137°C [17]. The unit cell contains 32 

Bi
3+

 ions, 32 Sn
4+

 ions, and 112 O
2–

 ions (Fig. 1). All Bi
3+

 ions are surrounded by eight oxygen 

ions and form a distorted cube; Sn
4+

 ions are surrounded by six oxygen ions forming distorted 

octahedral which interconnected by common vertices. Each atom is displaced from the 

corresponding position of the ideal pyrochlore cubic structure; the Sn-O sublattice is distorted 

much less than the Bi–O' one. 

 
 

Figure 1 Crystal structure of Bi2Sn2O7. The BiO8 fragment is shown separately, in the centre of 

octahedral is Sn. Color code: O atoms are at the corners of the blue octahedral, O' in dark blue. 

 

The average displacements from the ideal pyrochlore structure are 0.389, 0.104, 0.189, 

and 0.312 Å for Bi, Sn, O, and O', respectively. Sn atoms have a valence of +4 and the 4d
10

5s
0
 

electronic configuration; Bi atoms acquire the +3 valence and have the 5d
10

6s
2
 electronic 

configuration. The β-phase structure determined by neutron and synchrotron X-ray diffraction is 

trigonal (sp. gr. F43c(  
 )) [4]. The transition α → β at 135°C is accompanied by the second 

harmonic generation [18]. Above 680°C, there is one more polymorphic transition to the γ phase 

(sp. gr. Fd3m) [18–20]. 

The synthesized Bi2(Sn1–xCrx)2O7, х=0.05 and 0.1 samples were studied on a Bruker D8 

ADVANCE X-ray diffractometer with a VANTEC linear detector (CuKα radiation) at room 

temperature (Fig. 2a). All the peaks on the X-ray diffraction pattern, except for two weak 

impurity peaks of unknown phase, correspond to the monoclinic Pc cell in the Bi2Sn2O7 α- phase 

[17]. The Rietveld refinement was performed using the TOPAS 4.2 program [21]. The 

coordinates of all 176 atoms were fixed and borrowed from [17], since the number of only the 

coordinates 528 is comparable with the number of observed reflections. Nevertheless, even the 

fixed atomic coordinates allowed us to correctly describe all the available reflections and the 

refinement yielded low unreliability factors (see Table 1 and Fig. 2a). A linear decrease in the 
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unit cell volume with increasing substitute concentration (Fig. 2b) is indicative of the single-

phase nature of the Bi2(Sn1–xCrx)2O7 compositions, since the ionic radius IR (Cr
3+

, CN = 6) = 

0.615 Å is smaller than the ionic radius IR (Sn
4+

, CN = 6 ) = 0.69 Å [22]. Cr
+3

 ions occupy 

mainly the octahedral positions. 

 

 

Figure 2 (a) Difference XRD pattern of Bi2(Sn1-xCrx)2O7. The upper curve shows the 

experimental XRD pattern; the middle curve, the theoretical XRD pattern; and the lower curve, 

the difference between the theoretical and experimental XRD patterns. (b) Cell parameters of 

Bi2(Sn1-xCrx)2O7 

 

Table 1. Main experimental parameters and refined data for the Bi2(Sn1–xCrx)2O7 

x 0.05 0.1 

Sp. gr Pc Pc 

a, Ǻ 15.0634 (13) 15.075 (1) 

b, Ǻ 15.1055 (12) 15.0823 (1) 

C, Ǻ 21.381 (2) 21.3589 (13) 

β, ° 89.924 (7) 89.905 (4) 

V, Ǻ 4865.0 (7) 4856 (5) 

2θ interval, ° 5-90 5-90 

Rwp, % 13.93 13.62 

Rp, % 10.21 10.06 

RB, % 5.08 5.56 

Χ
2 

1.75 1.7 

 

The capacitance and dissipation factor were measured on an AM-3028 component 

analyzer in the frequency range of 0.1–1000 kHz at temperatures of 100–750 K. The charge and 

electrical resistance were determined on a Keithley 6517b electrometer in the temperature range 

of 300–750 K. Microwave Raman spectra were recorded in the backscattering geometry at room 

temperature through a 50x microscope objective using a Renishaw inVia micro-Raman 

spectrometer equipped with an argon laser (514.5 nm, maximum power is 10 MW). The spectral 

signal was scattered by a 2400-grooves/mm diffraction grating to a Peltier-cooled CCD detector 

with a resolution of 1 cm
–1

. Field dependences of the electric polarization of Bi2(Sn1–xCrx)2O7 

were investigated by a quasi-static method at frequencies of 10, 3, and 1 mHz in the temperature 

range of 80–550 K. Two measurement cycles were performed on the samples with silver 
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contacts; the contacts were separated from the sample by a lacquer spacer to prevent leakage 

currents. 

 

2.2 Permittivity 

The spectral and temperature dependences of the permittivity can be used to detect the 

electric dipole moment and establish its characteristics, even when a local dipole moment exists 

in small clusters. In addition, the dielectric properties give information about the charge transport 

and charge ordering processes. 

The temperature dependence of the Bi2(Sn1–xCrx)2O7 (x = 0.05 and 0.1) permittivity at 

several frequencies is shown in Fig. 3. In the α-phase for the composition with x = 0.05, the 

permittivity weakly depends on frequency and temperature. As the concentration of chromium 

ions increases in the temperature range of (370–560) K, additional anomalies in the form of 

broad dielectric loss maxima arise, the temperature of which increases logarithmically with the 

frequency. The temperature dependence of the frequency is exponential: ω = ω0epx (–ΔE/kT) 

with activation energy of ΔE = 0.4 eV, where k is the Boltzmann constant. According to the 

relation ωη = 1, the dipole moment relaxation time obeys the Arrhenius law η = η0epx (ΔE/kT), 

which describes the relaxation in disordered systems. When tin is replaced with chromium, 

bismuth ions are displaced from the ring center and form the electric dipole moments. In the 

glass state, the dipoles are randomly distributed in a rigid isotropic matrix and the system has no 

polarization. This state is not paraelectric either: each dipole remembers its original orientation. 

Upon approaching the temperature of the phase transition β → γ, the permittivity sharply grows. 

 

 
 

Figure 3 Temperature dependence of the permittivity of Bi2(Sn1-xCrx)2O7, х=0.05 and 0.1 at 

different frequencies: (а) real part and (b) imaginary part of Bi2(Sn0.95Cr0.05)2O7, (c) real part and 

(d) imaginary part of Bi2(Sn0.9Cr0.1)2O7. Curve 1 corresponds to 1 kHz, 2 - 5 kHz, 3 - 10 kHz, 4 - 

50 kHz, 5 - 100 kHz, 6 - 300 kHz. 

 

One of the criteria for the transition of a system to the dipole glass state is a specific 

dependence of the dispersion of the real (Re(ε)) and imaginary (Im(ε)) parts of the complex 

permittivity on the frequency near the temperature of the transition to the glass phase. Figure 4 

shows the frequency dependence of the permittivity for Bi2(Sn1–xCrx)2O7 (x = 0.05 and 0.1). In 

the composition with x = 0.05, dipole clusters with a short-range order with the thermodynamic 

mean zero dipole moment <pi> = 0 are formed. The effect of short-range order can be observed 

as a change in the frequency dependence of the complex permittivity, which can be 
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approximated by the power function ε = A/ω
n
 at frequencies of up to 105 Hz; at the higher 

frequencies, the permittivity decreases sharper. The dispersion of the real part of the permittivity 

in the monoclinic phase is no larger than 10% and the dielectric loss decreases manifold. At the 

transition to the trigonal phase, the dispersion increases and the exponent grows from n = 0.05 to 

0.4. For the composition with x = 0.1, the real and imaginary parts of the permittivity have a 

broad maximum, which shifts toward higher frequencies with increasing temperature. The ε(ω) 

dependences cannot be described within the Debye and Cole–Cole models. Along with the 

unlimitedly large relaxation times in glasses, the system has a large set of finite relaxation times, 

i.e., a broad spectrum of relaxation times. In bismuth pyrostannates, the relaxation time spectrum 

is caused by ion- and electron-relaxation polarization. The change in the relaxation mechanism is 

observed in the vicinity of 100 kHz. Below 100 kHz polarization is due to electron migration and 

relaxation is associated by electron-phonon interaction. Above 100 kHz relaxation of 

polarization is due to phonons. For the composition with x = 0.1, the dipole glass property were 

found. 

 

 
 

Figure 4 Frequency dependence of the permittivity of Bi2(Sn1-xCrx)2O7, х=0.05 and 0.1 at fixed 

temperatures: (а) real part and (b) imaginary part of Bi2(Sn0.95Cr0.05)2O7, (c) real part and (d) 

imaginary part of Bi2(Sn0.9Cr0.1)2O7. Curve 1 corresponds to 300 K; 2- 400 К, 3- 500 К, 4- 600 

К, 5- 700 К, 6-750 К 

Above 600 K, the imaginary part of the permittivity is well-described by the dependence 

ln(Im(ε)) = A - ΔE/T with the activation energy, which is almost independent of frequency and 

concentration and amounts to ΔE = 0.82(2) eV. The contribution of carriers to the dielectric loss 

can be ignored, since the relation ωIm(ε) = ζ is not satisfied. For the composition with x = 0.05, 

the dc temperature behavior of the conductivity and Im(ε) (T) are qualitatively different. This 

allows us to conclude that the dielectric loss and permittivity growth are caused by the ion 

subsystem and result from the high mobility of bismuth ions in the pyrostannate structure in the 

region of the β–γ transition. 

 

2.3 Raman scattering spectra 

The absence of symmetry center in the α- phase is also confirmed by the presence of 

Raman spectra. Figure 5 shows room-temperature Raman spectroscopy data for Bi2(Sn1–xCrx)2O7 

(x = 0 and 0.1) in the frequency range of 100–1000 cm
–1

. The Bi2Sn2O7 spectrum includes a 

series of broad bands and is consistent with the spectrum data [23]. 
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The ideal A2B2O(1)6O(2) pyrochlore structure (sp. gr.    ̅ ) has several types of 

oscillations: ГR = A1g + Eg + 4F2g [24]. In this representation, there are six main active Raman 

modes. The spectra shown in Fig. 5 have a number of spectral lines different from the ideal 

pyrochlore structure, which results from the symmetry lowering (Tab.2). Bismuth pyrostannate 

with the symmetry Pc(  
 ) has a great number of active modes ГR = 526А' + 527А''. Thus, in the 

ideal pyrochlore structure, vibrations are not observed below 200 cm
–1

; in particular, for BixY2–

xTi2O7 [25], the low-frequency mode corresponds to 226 cm
–1

. All phonon vibrations of the ideal 

pyrochlore structure are resolved in a polar monoclinic low-symmetry structure. In the frequency 

range of 100–200 cm
–1

, for Bi2(Sn1-xCrx)2O7 (x = 0), the bending (F1u) O–Bi–O (148 cm
–1

) and 

stretching (F1u) Bi–SnO6 (188 cm
–1

) vibrations are active. 

 

 
 

Figure 5 Raman spectrum: curve 1 corresponds to Bi2Sn2O7, 2- Bi2(Sn0.9Cr0.1)2O7 

 

In the intermediate spectral range of 200–400 cm
–1

 of Bi2Sn2O7, some modes correspond 

to the active IR spectroscopy vibrations for low-symmetry pyrochlores [26]. The 211 cm
–1

 

spectral line is mainly described by the stretching vibrations (F1u) along the Bi–SnO6 bond. The 

vibrations with frequencies of 274 cm
–1

 and 382 cm
–1

 are defined as bending (F1u) O–Sn–O and 

stretching (F1u) Bi–O. In this range, there are two modes that correspond to the ideal pyrochlore 

structure, 225 (F2g) and 248 cm
–1

 (Eg). Mode (F2g) is attributed to the displacement of oxygen O1 

in the SnO6 polyhedron [23]. Above 400 cm
–1

, four groups of vibrations are observed in the 

Bi2Sn2O7 Raman spectrum. The vibrations with 535 cm
–1

 and 400 cm
–1

 are classified as bending 

O–Sn–O (A1g) and Sn–O (F2g) [27,28]. 

Substitution tin ions by chromium decreased the number and intensity of Raman spectral 

lines and led to the occurrence of two new modes at frequencies of 581 cm
–1

 and 822 cm
–1

. The 

581 cm
–1

 spectral line exists in the optical spectra of compounds with an ideal pyrochlore 

structure and corresponds to the stretching vibrations of the Bi–O bond. The 822 cm
–1

 high-

frequency spectral line cannot be unambiguously interpreted and is defined as an overtone, 

combination band, or mode (F2g) [27]. 

 

Table 2. Parameters of phonon modes of the Raman spectra of Bi2(Sn1-xCrx)2O7 (x = 0 and 0.1) 

Bi2Sn2O7 Bi2Sn1.9Cr0.1O7 (cm
-1

) Assignment 

108 108 A2u 

148 144 broad O-Bi-O bending (F1u) 

181  Bi-SnO6 (F1u) 
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208   

215  (F1u) 

225  (F2g) 

248 251 (Eg) 

274  O-Sn-O (F1u) 

332 broad  (F1u) 

400  O motion in SnO'6 polyhedra 

(F2g) 

512  stretching SnO6 octahedra 

(A1g) 

534 523 O'-vacancy stretching (A1g) 

 581 (F2g) stretching Bi-O 

608  (F2g) 

 822 Overtone or combination 

 

Substitution of tin ions by Cr
+3

 does not change the spatial symmetry group and leads to 

the absence of some spectral lines in the Bi2Sn1.9Cr0.1O7 spectrum in comparison with the 

Bi2Sn2O7 spectrum. This is apparently due to an increase in the local symmetry of bismuth 

pyrostannate with the disordered Cr
+3

 ions. 

 

2.4 Polarization and thermopower 

Figures 6 and 7 present field dependences of the polarization for Bi2(Sn1-xCrx)2O7 (x = 

0.05 and 0.1). For both compositions, the polarization linearly increases with the field and a 

slight hysteresis is observed in the monoclinic phase. Upon multiple cycling, the hysteresis width 

increases linearly with the number of cycles for composition with x=0.05 (Fig. 6b). In addition, 

the hysteresis width increases with the quasi-static field amplitude (Fig. 6a). The dielectric 

susceptibility χ = P/ε0E determined in an electric field of 800 V/cm, increases upon heating in the 

monoclinic phase and reveals a maximum near the temperature of the transition to the dipole 

glass state (inset in Fig. 7a). Glasses are characterized by a broad susceptibility maximum in the 

region of dipole moment freezing and irreversible susceptibility behavior upon heating and 

cooling in an electric field. 

 

 
 

Figure 6 Dependence of the polarization of Bi2(Sn0.95Cr0.05)2O7 versus electric field (а) at 

frequency 0.01 Hz and different voltage at 300 K: curve 1 corresponds to 10 V, 2- 50 V, 3- 150 

V, 4- 200 V, (b) Ten cycles of polarization at 300 K, the tenth - a thick line, (c) Ten cycles of 
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polarization at 450 K, the tenth - a thick line, (d) Width of a hysteresis of polarization, curve 1 

corresponds to Bi2(Sn0.95Cr0.05)2O7, 2- Bi2(Sn0.9Cr0.1)2O7 

 

Bismuth pyrostannates are polymorphic and characterized by the coexistence of 

monoclinic and trigonal phases above the α–β structural transition. Delocalization of holes in the 

vicinity of chromium ions leads to diffusion and accumulation of charge in traps at the 

intercrystalline domain walls. Under the action of an external electric field, carriers diffuse to the 

domain surface and are localized in traps. As a result, the intercrystalline boundaries are charged, 

which leads to broadening of the hysteresis loop. There exist several models explaining the 

hysteresis loop growth. The most wide-spread models for bulk systems (crystals) are domain 

pinning on the space charges accumulated on domain walls, pinning on the formed defective 

clusters, and formation of dipole defects affecting the polarization [29–31]. The formation of 

charged boundary and partial shielding leads to the non-uniform distribution of potential in the 

sample volume. As a result of crystal structure rearrangement, the defect density changes; in 

particular, the oxygen vacancy concentration drops [32]. 

 
 

Figure 7 Dependence of the polarization of Bi2(Sn0.9Cr0.1)2O7, versus electric field at frequency 

0.01Hz and different temperatures: (а) Curve 1 corresponds to 155 K, 2- 300 K, 3- 350 K, (b) 

Curve 1 corresponds to 400 K and silver contacts, 2-400 K and, 3- 450 K, 4-500 K, 2, 3, 4- 

contacts varnished. Insert- the temperature dependence of susceptibility. Dash curves correspond 

to theoretical calculations 

 

In the β phase, the electron-relaxation polarization prevails. This type of polarization is 

typical of solid dielectrics with defects or impurity ions, which can trap electrons. In zero electric 

field, the trapped electrons can pass from one probable position to another under the action of 

thermal fluctuations. In an external electric field, such transitions will mainly occur in the field 

direction and the electric dipole moment will be induced in the bulk of a dielectric; i.e., the 

polarization will be observed. The time of polarization relaxation at room temperature is (10
–2

–

10
–6

) s. The most probable electron polarization mechanism is related to the occurrence of anion 

vacancies upon non-isovalent substitution of tin for chromium ions. Oxygen vacancies are 

equivalent to positive charges, near which, to compensate them in accordance with the 

electroneutrality principle, quasi-free electrons are localized, which determine the heat electron 

polarization. 

As the number of cycles increases, the hysteresis width in the β- phase decreases and the 

hysteresis shifts along the polarization axis with a slight increase in the space charge in zero 

fields (Fig. 6b). 
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We calculate the hysteresis and induced polarization using the following model. At the 

domain surface, there are traps (vacant surface states). In an external electric field, electrons 

from the impurity (defect) states in the bulk move to the surface states, where the electric charge 

Q = eN is accumulated (N is the number of electrons passed from the bulk). The sample 

polarization is caused by the charges localized on the surface with charge density ζ0 and in the 

bulk P = ε0χE and migration of weakly bound electrons inside grains: 

  ∫      ∫(   )   ∫(    )   ∫(        (  ))       √  
      , (1) 

where μ is the carrier mobility and n is the free carrier density. The hysteresis width ∆P = 2enμE0 

is determined by the concentration of current carriers, mobility and external electric field 

amplitude. The resulting polarization is 

  
   √  

    

 
           (2) 

The calculated polarization values are in good agreement with the experimental data. As 

the number of cycles of the quasi-static field increases, the impurity electron density and oxygen 

defect concentration in the bulk decrease; the charge on the crystallite surface ζ0 and static 

dielectric susceptibility increase, it leads to an increase in polarization. 

The effect of surface states can be determined by comparing the polarization of the 

samples with silver contacts and dielectric lacquer layer. The contribution of homo-charges at 

the dielectric surface, which passed from the metal electrode to the surface bismuth pyrostannate 

layers, to the polarization will decrease. However, the polarization and hysteresis increase by 

50–80% as compared with the sample with the deposited electrode. This is due to a decrease in 

leakage currents. The electron density at the domain walls grows. 

The mechanism of relaxation of polarization and functional dependence of the 

polarization from time will be determined for a switched-on and off electric field in the form of a 

rectangular pulse with frequencies of 0.1, 0.01, 0.003, and 0.001 Hz. Figure 8 shows time 

dependences of polarization in the monoclinic and trigonal phases. In the α- phase, the 

polarization sharply increases for x = 0.05 upon switching-on the electric field and is directly 

proportional to it. For the composition with x = 0.1, upon switching-on the electric field, the 

polarization in the α- phase increases according to the power law P = At
n
, where the exponent 

increases with temperature from n = 0.7 to 1 in the β- phase. As the electric field amplitude 

decreases, the polarization grows slower. In the dipole glass state, after switching-off the electric 

field, the polarization relaxes according to the logarithmic law P = P0 – γ lnt at t > (20 – 40) s. In 

the β- phase, after switching-off the electric field, the polarization remains almost invariable and 

depends on the electric field amplitude. Upon cooling from 420 K to room temperature in zero 

electric field, the sample is not polarized. Cooling of the sample to 300 K for 10 min in a field of 

800 V/cm followed by contact short-circuiting for 15 min yields a residual polarization of 0.1 

μC/cm2, which remains stable for several hours. 
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Figure 8 Dependence of the polarization versus time: (a) Bi2(Sn0.95Cr0.05)2O7 at 

temperature 300 K, frequency 0.003 Hz and different voltage, curve 1 corresponds to 50 V, 2- 

100 V, 3- 200 V. (b) Bi2(Sn0.95Cr0.05)2O7 at frequency 0.001 Hz and different temperatures, 1-360 

K, 2- 400 K. (c) Bi2(Sn0.9Cr0.1)2O7 at temperature 300 K, frequency 0.003 Hz and different 

voltage, curve 1 corresponds to 50 V, 2- 100 V, 3- 200 V. (d) Bi2(Sn0.9Cr0.1)2O7 at 400 K, 

frequency 0.003 Hz and different voltage, 1- 10 V, 2- 200 V, insert-50 V 

 

The electrical resistance in the monoclinic phase upon heating above room temperature 

increases by 15–30% and slightly changes upon temperature variation in the trigonal phase for x 

= 0.05 (Fig. 9). In bismuth pyrostannate with x = 0.1, the resistance maximum in the region of 

transition to the dipole glass state was found. The conductivity of Bi2(Sn1-xCrx)2O7 solid 

solutions is due to impurity states ζ = qμn, where n is the concentration of current carriers, 

practically independent of temperature. The temperature dependence of the resistance is mainly 

due to the mobility of the current carriers and is aroused to scattering by charged impurities. For 

a composition with x = 0.1, a correlated state of dipoles and a potential is formed in the region of 

transition to the dipole glass state. The scattering of current carriers by fluctuations of this 

potential leads to a maximum of electrical resistance. The carrier type can be determined from 

the thermopower. 

Figure 10 shows the temperature dependence of the thermopower with the change in the 

sign in the range of 430–550 K. Upon heating, the thermopower sign changes from positive to 

negative at T = 555 K for x = 0.05. As the concentration increases, the thermopower sign change 

shifts to the dipole glass region, where the electrical resistance is maximum. In the monoclinic 

phase, there is a hole type of current carriers induced by chromium ions. In the trigonal phase, 

the electronic type of current carriers for oxygen vacancies prevails. 
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Figure 9 Temperature dependence of electrical resistance versus temperature, curve 1 

corresponds to Bi2(Sn0.95Cr0.05)2O7, 2- Bi2(Sn0.9Cr0.1)2O7 

 
 

Figure 10 Temperature dependence of the thermopower coefficient: curve 1 corresponds to 

Bi2(Sn0.95Cr0.05)2O7, 2- Bi2(Sn0.9Cr0.1)2O7 

 

2.5 Model 

In the monoclinic phase, non-isovalent substitution of tin for chromium leads to the 

displacement of bismuth ions toward chromium with the formation of a dipole moment. At low 

concentrations, the short-range order forms, the effect of which manifests itself in the high-

frequency dielectric loss. With increasing concentration, degenerate states arise in the dipole 

moment direction. For example, in the Bi
+3

 environment there are two Cr
+3

 ions with a twofold 

degeneracy in the displacement of bismuth ions, which can be described by two potential wells 

with the characteristics dependent on the nearest environment. For the composition with x = 0.1, 

there is the distribution of potential barriers and relaxation times. 

The Debye and Cole–Cole models are based on the exponential dependence of the 

polarization relaxation. The frequency and temperature dependences of the permittivity cannot 

be described in the framework of these models, which indicates the nonexponential relaxation 

behavior. The experimental data are described by the model of the heterogeneous distribution of 

domains, which have the exponentially relaxation with account for the dynamical correlations. 

The size distribution of domains obeys the Poisson’s distribution with the relaxation rate  
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       ( (   ) (    )), where the distance between the energy levels is inversely 

proportional to the linear domain size        . The relaxation rate can be expressed as 

         ((  )  )), where C is the dynamic correlation parameter. The time dependence of 

polarization is [33]: 

 ( )    ∫         
 

 
    (     )   [        (    )]   (3) 

In the limit cases, at C < 0 the polarization exponentially depends on time and, at the 

positive dynamic correlations C > 0, turns to the power function. As the temperature increases, 

the dynamic correlation parameter decreases and the temperature of the maximum dielectric loss 

shifts toward higher frequencies with the sharper dielectric loss drop. In the dipole glass state, 

when the electric field is switched on, the polarization increases as P(t) = (t/η)
δ
exp(–t/η) with δ = 

1/3. When the dc electric field is switched off, the relaxation P(t) is described by the function 

P(t) = P0(1– (t/η)
δ
), where the relaxation time η depends on the prehistory and decreases with 

increasing cycle number . The relaxation crossover from the power to logarithmic function 

occurs in the range of t = (20–40) s. 

The transition from the monoclinic to trigonal phase is polymorphic with the two 

coexisting phases and crystalline interfaces. In the trigonal phase, the energy of binding of a hole 

with the chromium ion decreases; holes delocalize and participate in the Brownian motion. In an 

external electric field, diffusion occurs mainly in the field direction. Holes are localized in the 

traps on domain walls, the charge of which is partially compensated by electrons from oxygen 

vacancies. The charge distribution in the sample is schematically illustrated in Fig. 11. Electrons 

are related to oxygen vacancies, the activation energy of which is higher than the activation 

energy of holes. The charged interphase boundary induce the space charge proportional to 

         ( 
   

  
)        (

   

  
)  ∫     ,     (4) 

where NCr and N0 are the chromium ion and oxygen vacancy concentrations, ∆Е1 and ∆Е2 are the 

hole and electron activation energies, and Ir is the current of charge leakage to the contacts. 

 
 

Figure 11 Scheme of distribution of charges in Bi2(Sn1-xCrx)2O7, х=0.05, 0.1. (a) Distribution of 

dipole moments, (b) distribution of charges on interphase borders. 

 

3. Conclusions 
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The dipole glass state in bismuth pyrostannate (x = 0.1) with a monoclinic structure was 

determined from the frequency and temperature dependences of the permittivity. The relaxation 

of polarization is described by the power and logarithmic dependence. The dielectric 

susceptibility maximum in a dc electric field was found. In the vicinity of the dipole moment 

freezing point in Bi2(Sn0.9Cr0.1)2O7, the electrical resistance maximum and change of sign of 

thermopower were established. The absence of inversion center in doped bismuth stannates was 

confirmed by the Raman spectroscopy investigations. 

In the β- phase, the hysteresis of polarization shifted along the polarization axis was 

found. The hysteresis width was shown to increase upon heating. In the trigonal phase, the 

thermopower changes its sign from positive to negative upon heating, which is indicative of the 

existence of two charge carrier types. 

The localization of holes in the α- phase in the vicinity of chromium ions leads to the 

shift of bismuth ions with the formation of dipole moments. Above the temperature of the α–β 

structural transition, there are domains of both phases. The diffusion of holes and oxygen 

vacancies and their pinning on the intercrystalline domain walls lead to the charge accumulation 

(shift along the polarization axis). Partial shielding of the charged boundary by electrons and 

their diffusion in an external electric field cause the polarization hysteresis. 
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